LIVECell - A large-scale dataset for label-free live cell segmentation

Related tags

Deep LearningLIVECell
Overview

LIVECell dataset

This document contains instructions of how to access the data associated with the submitted manuscript "LIVECell - A large-scale dataset for label-free live cell segmentation" by Edlund et. al. 2021.

Background

Light microscopy is a cheap, accessible, non-invasive modality that when combined with well-established protocols of two-dimensional cell culture facilitates high-throughput quantitative imaging to study biological phenomena. Accurate segmentation of individual cells enables exploration of complex biological questions, but this requires sophisticated imaging processing pipelines due to the low contrast and high object density. Deep learning-based methods are considered state-of-the-art for most computer vision problems but require vast amounts of annotated data, for which there is no suitable resource available in the field of label-free cellular imaging. To address this gap we present LIVECell, a high-quality, manually annotated and expert-validated dataset that is the largest of its kind to date, consisting of over 1.6 million cells from a diverse set of cell morphologies and culture densities. To further demonstrate its utility, we provide convolutional neural network-based models trained and evaluated on LIVECell.

How to access LIVECell

All images in LIVECell are available following this link (requires 1.3 GB). Annotations for the different experiments are linked below. To see a more details regarding benchmarks and how to use our models, see this link.

LIVECell-wide train and evaluate

Annotation set URL
Training set link
Validation set link
Test set link

Single cell-type experiments

Cell Type Training set Validation set Test set
A172 link link link
BT474 link link link
BV-2 link link link
Huh7 link link link
MCF7 link link link
SH-SHY5Y link link link
SkBr3 link link link
SK-OV-3 link link link

Dataset size experiments

Split URL
2 % link
4 % link
5 % link
25 % link
50 % link

Comparison to fluorescence-based object counts

The images and corresponding json-file with object count per image is available together with the raw fluorescent images the counts is based on.

Cell Type Images Counts Fluorescent images
A549 link link link
A172 link link link

Download all of LIVECell

The LIVECell-dataset and trained models is stored in an Amazon Web Services (AWS) S3-bucket. It is easiest to download the dataset if you have an AWS IAM-user using the AWS-CLI in the folder you would like to download the dataset to by simply:

aws s3 sync s3://livecell-dataset .

If you do not have an AWS IAM-user, the procedure is a little bit more involved. We can use curl to make an HTTP-request to get the S3 XML-response and save to files.xml:

files.xml ">
curl -H "GET /?list-type=2 HTTP/1.1" \
     -H "Host: livecell-dataset.s3.eu-central-1.amazonaws.com" \
     -H "Date: 20161025T124500Z" \
     -H "Content-Type: text/plain" http://livecell-dataset.s3.eu-central-1.amazonaws.com/ > files.xml

We then get the urls from files using grep:

)[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt ">
grep -oPm1 "(?<=
   
    )[^<]+" files.xml | sed -e 's/^/http:\/\/livecell-dataset.s3.eu-central-1.amazonaws.com\//' > urls.txt

   

Then download the files you like using wget.

File structure

The top-level structure of the files is arranged like:

/livecell-dataset/
    ├── LIVECell_dataset_2021  
    |       ├── annotations/
    |       ├── models/
    |       ├── nuclear_count_benchmark/	
    |       └── images.zip  
    ├── README.md  
    └── LICENSE

LIVECell_dataset_2021/images

The images of the LIVECell-dataset are stored in /livecell-dataset/LIVECell_dataset_2021/images.zip along with their annotations in /livecell-dataset/LIVECell_dataset_2021/annotations/.

Within images.zip are the training/validation-set and test-set images are completely separate to facilitate fair comparison between studies. The images require 1.3 GB disk space unzipped and are arranged like:

images/
    ├── livecell_test_images
    |       └── 
   
    
    |               └── 
    
     _Phase_
     
      _
      
       _
       
        _
        
         .tif └── livecell_train_val_images └── 
          
         
        
       
      
     
    
   

Where is each of the eight cell-types in LIVECell (A172, BT474, BV2, Huh7, MCF7, SHSY5Y, SkBr3, SKOV3). Wells are the location in the 96-well plate used to culture cells, indicates location in the well where the image was acquired, the time passed since the beginning of the experiment to image acquisition and index of the crop of the original larger image. An example image name is A172_Phase_C7_1_02d16h00m_2.tif, which is an image of A172-cells, grown in well C7 where the image is acquired in position 1 two days and 16 hours after experiment start (crop position 2).

LIVECell_dataset_2021/annotations/

The annotations of LIVECell are prepared for all tasks along with the training/validation/test splits used for all experiments in the paper. The annotations require 2.1 GB of disk space and are arranged like:

annotations/
    ├── LIVECell
    |       └── livecell_coco_
   
    .json
    ├── LIVECell_single_cells
    |       └── 
    
     
    |               └── 
     
      .json
    └── LIVECell_dataset_size_split
            └── 
      
       _train
       
        percent.json 
       
      
     
    
   
  • annotations/LIVECell contains the annotations used for the LIVECell-wide train and evaluate task.
  • annotations/LIVECell_single_cells contains the annotations used for Single cell type train and evaluate as well as the Single cell type transferability tasks.
  • annotations/LIVECell_dataset_size_split contains the annotations used to investigate the impact of training set scale.

All annotations are in Microsoft COCO Object Detection-format, and can for instance be parsed by the Python package pycocotools.

models/

ALL models trained and evaluated for tasks associated with LIVECell are made available for wider use. The models are trained using detectron2, Facebook's framework for object detection and instance segmentation. The models require 15 GB of disk space and are arranged like:

models/
   └── Anchor_
   
    
            ├── ALL/
            |    └──
    
     .pth
            └── 
     
      /
                 └──
      
       .pths
       

      
     
    
   

Where each .pth is a binary file containing the model weights.

configs/

The config files for each model can be found in the LIVECell github repo

LIVECell
    └── Anchor_
   
    
            ├── livecell_config.yaml
            ├── a172_config.yaml
            ├── bt474_config.yaml
            ├── bv2_config.yaml
            ├── huh7_config.yaml
            ├── mcf7_config.yaml
            ├── shsy5y_config.yaml
            ├── skbr3_config.yaml
            └── skov3_config.yaml

   

Where each config file can be used to reproduce the training done or in combination with our model weights for usage, for more info see the usage section.

nuclear_count_benchmark/

The images and fluorescence-based object counts are stored as the label-free images in a zip-archive and the corresponding counts in a json as below:

nuclear_count_benchmark/
    ├── A172.zip
    ├── A172_counts.json
    ├── A172_fluorescent_images.zip
    ├── A549.zip
    ├── A549_counts.json 
    └── A549_fluorescent_images.zip

The json files are on the following format:

": " " } ">
{
    "
     
      ": "
      
       "
}

      
     

Where points to one of the images in the zip-archive, and refers to the object count according fluorescent nuclear labels.

LICENSE

All images, annotations and models associated with LIVECell are published under Attribution-NonCommercial 4.0 International (CC BY-NC 4.0) license.

All software source code associated associated with LIVECell are published under the MIT License.

Owner
Sartorius Corporate Research
Sartorius Corporate Research
Breaking the Curse of Space Explosion: Towards Efficient NAS with Curriculum Search

Breaking the Curse of Space Explosion: Towards Effcient NAS with Curriculum Search Pytorch implementation for "Breaking the Curse of Space Explosion:

guoyong 17 Jan 03, 2023
EdMIPS: Rethinking Differentiable Search for Mixed-Precision Neural Networks

EdMIPS is an efficient algorithm to search the optimal mixed-precision neural network directly without proxy task on ImageNet given computation budgets. It can be applied to many popular network arch

Zhaowei Cai 47 Dec 30, 2022
Relative Uncertainty Learning for Facial Expression Recognition

Relative Uncertainty Learning for Facial Expression Recognition The official implementation of the following paper at NeurIPS2021: Title: Relative Unc

35 Dec 28, 2022
tf2-keras implement yolov5

YOLOv5 in tesnorflow2.x-keras yolov5数据增强jupyter示例 Bilibili视频讲解地址: 《yolov5 解读,训练,复现》 Bilibili视频讲解PPT文件: yolov5_bilibili_talk_ppt.pdf Bilibili视频讲解PPT文件:

yangcheng 254 Jan 08, 2023
AITUS - An atomatic notr maker for CYTUS

AITUS an automatic note maker for CYTUS. 利用AI根据指定乐曲生成CYTUS游戏谱面。 效果展示:https://www

GradiusTwinbee 6 Feb 24, 2022
Detectron2 is FAIR's next-generation platform for object detection and segmentation.

Detectron2 is Facebook AI Research's next generation software system that implements state-of-the-art object detection algorithms. It is a ground-up r

Facebook Research 23.3k Jan 08, 2023
Implementation of the Remixer Block from the Remixer paper, in Pytorch

Remixer - Pytorch Implementation of the Remixer Block from the Remixer paper, in Pytorch. It claims that substituting the feedforwards in transformers

Phil Wang 35 Aug 23, 2022
DCGAN LSGAN WGAN-GP DRAGAN PyTorch

Recommendation Our GAN based work for facial attribute editing - AttGAN. News 8 April 2019: We re-implement these GANs by Tensorflow 2! The old versio

Zhenliang He 408 Nov 30, 2022
SelfRemaster: SSL Speech Restoration

SelfRemaster: Self-Supervised Speech Restoration Official implementation of SelfRemaster: Self-Supervised Speech Restoration with Analysis-by-Synthesi

Takaaki Saeki 46 Jan 07, 2023
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

DongGeun-Yoon 19 Jun 07, 2022
Ipython notebook presentations for getting starting with basic programming, statistics and machine learning techniques

Data Science 45-min Intros Every week*, our data science team @Gnip (aka @TwitterBoulder) gets together for about 50 minutes to learn something. While

Scott Hendrickson 1.6k Dec 31, 2022
This repo contains code to reproduce all experiments in Equivariant Neural Rendering

Equivariant Neural Rendering This repo contains code to reproduce all experiments in Equivariant Neural Rendering by E. Dupont, M. A. Bautista, A. Col

Apple 83 Nov 16, 2022
Betafold - AlphaFold with tunings

BetaFold We (hegelab.org) craeted this standalone AlphaFold (AlphaFold-Multimer,

2 Aug 11, 2022
Gems & Holiday Package Prediction

Predictive_Modelling Gems & Holiday Package Prediction This project is based on 2 cases studies : Gems Price Prediction and Holiday Package prediction

Avnika Mehta 1 Jan 27, 2022
Implementation of Memory-Compressed Attention, from the paper "Generating Wikipedia By Summarizing Long Sequences"

Memory Compressed Attention Implementation of the Self-Attention layer of the proposed Memory-Compressed Attention, in Pytorch. This repository offers

Phil Wang 47 Dec 23, 2022
Instant-nerf-pytorch - NeRF trained SUPER FAST in pytorch

instant-nerf-pytorch This is WORK IN PROGRESS, please feel free to contribute vi

94 Nov 22, 2022
BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work

BasicNeuralNetwork - This project looks over the basic structure of a neural network and how machine learning training algorithms work. For this project, I used the sigmoid function as an activation

Manas Bommakanti 1 Jan 22, 2022
Notebooks em Python para Métodos Eletromagnéticos

GeoSci Labs This is a repository of code used to power the notebooks and interactive examples for https://em.geosci.xyz and https://gpg.geosci.xyz. Th

Victor Cezar Tocantins 1 Nov 16, 2021
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023