2019 Data Science Bowl

Overview

2019 Data Science Bowl

Uncover the factors to help measure how young children learn

Screenshot

Ignite Possibilities.

Uncover new insights in early childhood education and how media can support learning outcomes. Participate in our fifth annual Data Science Bowl, presented by Booz Allen Hamilton and Kaggle.

PBS KIDS, a trusted name in early childhood education for decades, aims to gain insights into how media can help children learn important skills for success in school and life. In this challenge, you’ll use anonymous gameplay data, including knowledge of videos watched and games played, from the PBS KIDS Measure Up! app, a game-based learning tool developed as a part of the CPB-PBS Ready To Learn Initiative with funding from the U.S. Department of Education. Competitors will be challenged to predict scores on in-game assessments and create an algorithm that will lead to better-designed games and improved learning outcomes. Your solutions will aid in discovering important relationships between engagement with high-quality educational media and learning processes.

Data Science Bowl is the world’s largest data science competition focused on social good. Each year, this competition gives Kagglers a chance to use their passion to change the world. Over the last four years, more than 50,000+ Kagglers have submitted over 114,000+ submissions, to improve everything from lung cancer and heart disease detection to ocean health.

For more information on the Data Science Bowl, please visit www.DataScienceBowl.com

Where does the data for the competition come from?

The data used in this competition is anonymous, tabular data of interactions with the PBS KIDS Measure Up! app. Select data, such as a user’s in-app assessment score or their path through the game, is collected by the PBS KIDS Measure Up! app, a game-based learning tool.

PBS KIDS is committed to creating a safe and secure environment that family members of all ages can enjoy. The PBS KIDS Measure Up! app does not collect any personally identifying information, such as name or location. All of the data used in the competition is anonymous. To view the full PBS KIDS privacy policy, please visit: pbskids.org/privacy.

No one will be able to download the entire data set and the participants do not have access to any personally identifiable information about individual users. The Data Science Bowl and the use of data for this year’s competition has been reviewed to ensure that it meets requirements of applicable child privacy regulations by PRIVO, a leading global industry expert in children’s online privacy.

What is the PBS KIDS Measure Up! app?

Screenshot

In the PBS KIDS Measure Up! app, children ages 3 to 5 learn early STEM concepts focused on length, width, capacity, and weight while going on an adventure through Treetop City, Magma Peak, and Crystal Caves. Joined by their favorite PBS KIDS characters, children can also collect rewards and unlock digital toys as they play. To learn more about PBS KIDS Measure Up!, please click here.

PBS KIDS and the PBS KIDS Logo are registered trademarks of PBS. Used with permission. The contents of PBS KIDS Measure Up! were developed under a grant from the Department of Education. However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. The app is funded by a Ready To Learn grant (PR/AWARD No. U295A150003, CFDA No. 84.295A) provided by the Department of Education to the Corporation for Public Broadcasting.

My Solution 460 Features | Simple | Easy | Less_overfit | Fast

Screenshot

Simple, easy and fast and less overfitting solution with 460 features

This notebook shows problem solving approach using LightGBM Regression and 890 features computed by bruno aquino in the following notebook which are later reduced to 460 features in my approach.

https://www.kaggle.com/braquino/890-features

It also uses the regression coefficients from following notebook by artgor.

https://www.kaggle.com/artgor/quick-and-dirty-regression

Apart from these i also have included resultant LightGBM parameters from exhaustive parameter tuning.

If you find this notebook helpful please press that thumbs up button and thank you :)

PLEASE NOTE THIS IMPORTANT POINT "DON'T BELIEVE IN PUBLIC LB" IT'S ONLY 14% of real data that's private!! We should build a model that's less overfittig and still finding the good results."

Your score will be different for different submissions that's because of randomness in gradient boosting! and that's completely normal you must focus on reducing overfitting, gather as much data as possible and ofcourse reduce the number of features as much as possible without sacrificing model validation score and that's exactly what i've done below :)

Thank you!

Owner
Deepak Nandwani
A Machine Learning and Data Science Engineer, my goal is to make a +ve impact on millions of people's daily lives & to be hyper-optimistic about the future.
Deepak Nandwani
Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks

The following Python scripts aim to use a Random Forest machine learning algorithm to predict the water affinity of Metal-Organic Frameworks (MOFs). The training set is extracted from the Cambridge S

1 Jan 09, 2022
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

136 Dec 22, 2022
PyPSA: Python for Power System Analysis

1 Python for Power System Analysis Contents 1 Python for Power System Analysis 1.1 About 1.2 Documentation 1.3 Functionality 1.4 Example scripts as Ju

758 Dec 30, 2022
NumPy and Pandas interface to Big Data

Blaze translates a subset of modified NumPy and Pandas-like syntax to databases and other computing systems. Blaze allows Python users a familiar inte

Blaze 3.1k Jan 05, 2023
COVID-19 deaths statistics around the world

COVID-19-Deaths-Dataset COVID-19 deaths statistics around the world This is a daily updated dataset of COVID-19 deaths around the world. The dataset c

Nisa Efendioğlu 4 Jul 10, 2022
Data processing with Pandas.

Processing-data-with-python This is a simple example showing how to use Pandas to create a dataframe and the processing data with python. The jupyter

1 Jan 23, 2022
Project under the certification "Data Analysis with Python" on FreeCodeCamp

Sea Level Predictor Assignment You will anaylize a dataset of the global average sea level change since 1880. You will use the data to predict the sea

Bhavya Gopal 3 Jan 31, 2022
Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required)

Binomial Option Pricing Calculator Option Pricing Calculator using the Binomial Pricing Method (No Libraries Required) Background A derivative is a fi

sammuhrai 1 Nov 29, 2021
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance companies

Insurance-Fraud-Claims Detailed analysis on fraud claims in insurance companies, gives you information as to why huge loss take place in insurance com

1 Jan 27, 2022
A columnar data container that can be compressed.

Unmaintained Package Notice Unfortunately, and due to lack of resources, the Blosc Development Team is unable to maintain this package anymore. During

944 Dec 09, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
A collection of robust and fast processing tools for parsing and analyzing web archive data.

ChatNoir Resiliparse A collection of robust and fast processing tools for parsing and analyzing web archive data. Resiliparse is part of the ChatNoir

ChatNoir 24 Nov 29, 2022
This python script allows you to manipulate the audience data from Sl.ido surveys

Slido-Automated-VoteBot This python script allows you to manipulate the audience data from Sl.ido surveys Since Slido blocks interference from automat

Pranav Menon 1 Jan 24, 2022
BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings.

BinTuner is a cost-efficient auto-tuning framework, which can deliver a near-optimal binary code that reveals much more differences than -Ox settings. it also can assist the binary code analysis rese

BinTuner 42 Dec 16, 2022
Display the behaviour of a realtime program with a scope or logic analyser.

1. A monitor for realtime MicroPython code This library provides a means of examining the behaviour of a running system. It was initially designed to

Peter Hinch 17 Dec 05, 2022
PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

PATC: Introduction to Big Data Analytics. Practical Data Analytics for Solving Real World Problems

1 Feb 07, 2022
Renato 214 Jan 02, 2023
Data Analysis for First Year Laboratory at Imperial College, London.

Data Analysis for First Year Laboratory at Imperial College, London. For personal reference only, and to reference in lab reports and lab books.

Martin He 0 Aug 29, 2022
A notebook to analyze Amazon Recommendation Review Dataset.

Amazon Recommendation Review Dataset Analyzer A notebook to analyze Amazon Recommendation Review Dataset. Features Calculates distinct user count, dis

isleki 3 Aug 22, 2022