2019 Data Science Bowl

Overview

2019 Data Science Bowl

Uncover the factors to help measure how young children learn

Screenshot

Ignite Possibilities.

Uncover new insights in early childhood education and how media can support learning outcomes. Participate in our fifth annual Data Science Bowl, presented by Booz Allen Hamilton and Kaggle.

PBS KIDS, a trusted name in early childhood education for decades, aims to gain insights into how media can help children learn important skills for success in school and life. In this challenge, you’ll use anonymous gameplay data, including knowledge of videos watched and games played, from the PBS KIDS Measure Up! app, a game-based learning tool developed as a part of the CPB-PBS Ready To Learn Initiative with funding from the U.S. Department of Education. Competitors will be challenged to predict scores on in-game assessments and create an algorithm that will lead to better-designed games and improved learning outcomes. Your solutions will aid in discovering important relationships between engagement with high-quality educational media and learning processes.

Data Science Bowl is the world’s largest data science competition focused on social good. Each year, this competition gives Kagglers a chance to use their passion to change the world. Over the last four years, more than 50,000+ Kagglers have submitted over 114,000+ submissions, to improve everything from lung cancer and heart disease detection to ocean health.

For more information on the Data Science Bowl, please visit www.DataScienceBowl.com

Where does the data for the competition come from?

The data used in this competition is anonymous, tabular data of interactions with the PBS KIDS Measure Up! app. Select data, such as a user’s in-app assessment score or their path through the game, is collected by the PBS KIDS Measure Up! app, a game-based learning tool.

PBS KIDS is committed to creating a safe and secure environment that family members of all ages can enjoy. The PBS KIDS Measure Up! app does not collect any personally identifying information, such as name or location. All of the data used in the competition is anonymous. To view the full PBS KIDS privacy policy, please visit: pbskids.org/privacy.

No one will be able to download the entire data set and the participants do not have access to any personally identifiable information about individual users. The Data Science Bowl and the use of data for this year’s competition has been reviewed to ensure that it meets requirements of applicable child privacy regulations by PRIVO, a leading global industry expert in children’s online privacy.

What is the PBS KIDS Measure Up! app?

Screenshot

In the PBS KIDS Measure Up! app, children ages 3 to 5 learn early STEM concepts focused on length, width, capacity, and weight while going on an adventure through Treetop City, Magma Peak, and Crystal Caves. Joined by their favorite PBS KIDS characters, children can also collect rewards and unlock digital toys as they play. To learn more about PBS KIDS Measure Up!, please click here.

PBS KIDS and the PBS KIDS Logo are registered trademarks of PBS. Used with permission. The contents of PBS KIDS Measure Up! were developed under a grant from the Department of Education. However, those contents do not necessarily represent the policy of the Department of Education, and you should not assume endorsement by the Federal Government. The app is funded by a Ready To Learn grant (PR/AWARD No. U295A150003, CFDA No. 84.295A) provided by the Department of Education to the Corporation for Public Broadcasting.

My Solution 460 Features | Simple | Easy | Less_overfit | Fast

Screenshot

Simple, easy and fast and less overfitting solution with 460 features

This notebook shows problem solving approach using LightGBM Regression and 890 features computed by bruno aquino in the following notebook which are later reduced to 460 features in my approach.

https://www.kaggle.com/braquino/890-features

It also uses the regression coefficients from following notebook by artgor.

https://www.kaggle.com/artgor/quick-and-dirty-regression

Apart from these i also have included resultant LightGBM parameters from exhaustive parameter tuning.

If you find this notebook helpful please press that thumbs up button and thank you :)

PLEASE NOTE THIS IMPORTANT POINT "DON'T BELIEVE IN PUBLIC LB" IT'S ONLY 14% of real data that's private!! We should build a model that's less overfittig and still finding the good results."

Your score will be different for different submissions that's because of randomness in gradient boosting! and that's completely normal you must focus on reducing overfitting, gather as much data as possible and ofcourse reduce the number of features as much as possible without sacrificing model validation score and that's exactly what i've done below :)

Thank you!

Owner
Deepak Nandwani
A Machine Learning and Data Science Engineer, my goal is to make a +ve impact on millions of people's daily lives & to be hyper-optimistic about the future.
Deepak Nandwani
peptides.py is a pure-Python package to compute common descriptors for protein sequences

peptides.py Physicochemical properties and indices for amino-acid sequences. 🗺️ Overview peptides.py is a pure-Python package to compute common descr

Martin Larralde 32 Dec 31, 2022
Pandas on AWS - Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretManager, PostgreSQL, MySQL, SQLServer and S3 (Parquet, CSV, JSON and EXCEL).

AWS Data Wrangler Pandas on AWS Easy integration with Athena, Glue, Redshift, Timestream, QuickSight, Chime, CloudWatchLogs, DynamoDB, EMR, SecretMana

Amazon Web Services - Labs 3.3k Jan 04, 2023
Instant search for and access to many datasets in Pyspark.

SparkDataset Provides instant access to many datasets right from Pyspark (in Spark DataFrame structure). Drop a star if you like the project. 😃 Motiv

Souvik Pratiher 31 Dec 16, 2022
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

Dbt-core - dbt enables data analysts and engineers to transform their data using the same practices that software engineers use to build applications.

dbt Labs 6.3k Jan 08, 2023
Modular analysis tools for neurophysiology data

Neuroanalysis Modular and interactive tools for analysis of neurophysiology data, with emphasis on patch-clamp electrophysiology. Functions for runnin

Allen Institute 5 Dec 22, 2021
Active Learning demo using two small datasets

ActiveLearningDemo How to run step one put the dataset folder and use command below to split the dataset to the required structure run utils.py For ea

3 Nov 10, 2021
pipeline for migrating lichess data into postgresql

How Long Does It Take Ordinary People To "Get Good" At Chess? TL;DR: According to 5.5 years of data from 2.3 million players and 450 million games, mo

Joseph Wong 182 Nov 11, 2022
The Master's in Data Science Program run by the Faculty of Mathematics and Information Science

The Master's in Data Science Program run by the Faculty of Mathematics and Information Science is among the first European programs in Data Science and is fully focused on data engineering and data a

Amir Ali 2 Jun 17, 2022
Two phase pipeline + StreamlitTwo phase pipeline + Streamlit

Two phase pipeline + Streamlit This is an example project that demonstrates how to create a pipeline that consists of two phases of execution. In betw

Rick Lamers 1 Nov 17, 2021
Spaghetti: an open-source Python library for the analysis of network-based spatial data

pysal/spaghetti SPAtial GrapHs: nETworks, Topology, & Inference Spaghetti is an open-source Python library for the analysis of network-based spatial d

Python Spatial Analysis Library 203 Jan 03, 2023
Weather Image Recognition - Python weather application using series of data

Weather Image Recognition - Python weather application using series of data

Kushal Shingote 1 Feb 04, 2022
A tool to compare differences between dataframes and create a differences report in Excel

similarpanda A module to check for differences between pandas Dataframes, and generate a report in Excel format. This is helpful in a workplace settin

Andre Pretorius 9 Sep 15, 2022
A set of functions and analysis classes for solvation structure analysis

SolvationAnalysis The macroscopic behavior of a liquid is determined by its microscopic structure. For ionic systems, like batteries and many enzymes,

MDAnalysis 19 Nov 24, 2022
API>local_db>AWS_RDS - Disclaimer! All data used is for educational purposes only.

APIlocal_dbAWS_RDS Disclaimer! All data used is for educational purposes only. ETL pipeline diagram. Aim of project By creating a fully working pipe

0 Apr 25, 2022
A data structure that extends pyspark.sql.DataFrame with metadata information.

MetaFrame A data structure that extends pyspark.sql.DataFrame with metadata info

Invent Analytics 8 Feb 15, 2022
PyStan, a Python interface to Stan, a platform for statistical modeling. Documentation: https://pystan.readthedocs.io

PyStan PyStan is a Python interface to Stan, a package for Bayesian inference. Stan® is a state-of-the-art platform for statistical modeling and high-

Stan 229 Dec 29, 2022
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

Brady Law 2 Dec 01, 2021
WithPipe is a simple utility for functional piping in Python.

A utility for functional piping in Python that allows you to access any function in any scope as a partial.

Michael Milton 1 Oct 26, 2021
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021