TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

Overview

FunMatch-Distillation

TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

The techniques have been demonstrated using three datasets:

This repository provides Kaggle Kernel notebooks so that we can leverage the free TPu v3-8 to run the long training schedules. Please refer to this section.

Importance

The importance of knowledge distillation lies in its practical usefulness. With the recipes from "function matching", we can now perform knowledge distillation using a principled approach yielding student models that can actually match the performance of their teacher models. This essentially allows us to compress bigger models into (much) smaller ones thereby reducing storage costs and improving inference speed.

Key ingredients

  • No use of ground-truth labels during distillation.
  • Teacher and student should see same images during distillation as opposed to differently augmented views of same images.
  • Aggressive form of MixUp as the key augmentation recipe. MixUp is paired with "Inception-style" cropping (implemented in this script).
  • A LONG training schedule for distillation. At least 1000 epochs to get good results without overfitting. The importance of a long training schedule is paramount as studied in the paper.

Results

The table below summarizes the results of my experiments. In all cases, teacher is a BiT-ResNet101x3 model and student is a BiT-ResNet50x1. For fun, you can also try to distill into other model families. BiT stands for "Big Transfer" and it was proposed in this paper.

Dataset Teacher/Student Top-1 Acc on Test Location
Flowers102 Teacher 98.18% Link
Flowers102 Student (1000 epochs) 81.02% Link
Pet37 Teacher 90.92% Link
Pet37 Student (300 epochs) 81.3% Link
Pet37 Student (1000 epochs) 86% Link
Food101 Teacher 85.52% Link
Food101 Student (100 epochs) 76.06% Link

(Location denotes the trained model location.)

These results are consistent with Table 4 of the original paper.

It should be noted that none of the above student training regimes showed signs of overfitting. Further improvements can be done by training for longer. The authors also showed that Shampoo can get to similar performance much quicker than Adam during distillation. So, it may very well be possible to get this performance with fewer epochs with Shampoo.

A few differences from the original implementation:

  • The authors use BiT-ResNet152x2 as a teacher.
  • The mixup() variant I used will produce a pair of duplicate images if the number of images is even. Now, for 8 workers it will become 8 pairs. This may have led to the reduced performance. We can overcome this by using tf.roll(images, 1, axis=0) instead of tf.reverse in the mixup() function. Thanks to Lucas Beyer for pointing this out.

About the notebooks

All the notebooks are fully runnable on Kaggle Kernel. The only requirement is that you'd need a billing enabled GCP account to use GCS Buckets to store data.

Notebook Description Kaggle Kernel
train_bit.ipynb Shows how to train the teacher model. Link
train_bit_keras_tuner.ipynb Shows how to run hyperparameter tuning using
Keras Tuner for the teacher model.
Link
funmatch_distillation.ipynb Shows an implementation of the recipes
from "function matching".
Link

These are only demonstrated on the Pet37 dataset but will work out-of-the-box for the other datasets too.

TFRecords

For convenience, TFRecords of different datasets are provided:

Dataset TFRecords
Flowers102 Link
Pet37 Link
Food101 Link

Paper citation

@misc{beyer2021knowledge,
      title={Knowledge distillation: A good teacher is patient and consistent}, 
      author={Lucas Beyer and Xiaohua Zhai and Amélie Royer and Larisa Markeeva and Rohan Anil and Alexander Kolesnikov},
      year={2021},
      eprint={2106.05237},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

Acknowledgements

Huge thanks to Lucas Beyer (first author of the paper) for providing suggestions on the initial version of the implementation.

Thanks to the ML-GDE program for providing GCP credits.

Thanks to TRC for providing Cloud TPU access.

You might also like...
Implementation of momentum^2 teacher

Momentum^2 Teacher: Momentum Teacher with Momentum Statistics for Self-Supervised Learning Requirements All experiments are done with python3.6, torch

Code implementation of Data Efficient Stagewise Knowledge Distillation paper.
Code implementation of Data Efficient Stagewise Knowledge Distillation paper.

Data Efficient Stagewise Knowledge Distillation Table of Contents Data Efficient Stagewise Knowledge Distillation Table of Contents Requirements Image

The official implementation of CVPR 2021 Paper: Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation.

Improving Weakly Supervised Visual Grounding by Contrastive Knowledge Distillation This repository is the official implementation of CVPR 2021 paper:

PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.
PyTorch implementation of paper A Fast Knowledge Distillation Framework for Visual Recognition.

FKD: A Fast Knowledge Distillation Framework for Visual Recognition Official PyTorch implementation of paper A Fast Knowledge Distillation Framework f

Official implementation of the paper
Official implementation of the paper "Lightweight Deep CNN for Natural Image Matting via Similarity Preserving Knowledge Distillation"

Lightweight-Deep-CNN-for-Natural-Image-Matting-via-Similarity-Preserving-Knowledge-Distillation Introduction Accepted at IEEE Signal Processing Letter

Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms
Pcos-prediction - Predicts the likelihood of Polycystic Ovary Syndrome based on patient attributes and symptoms

PCOS Prediction 🥼 Predicts the likelihood of Polycystic Ovary Syndrome based on

[ICLR 2021 Spotlight Oral] "Undistillable: Making A Nasty Teacher That CANNOT teach students", Haoyu Ma, Tianlong Chen, Ting-Kuei Hu, Chenyu You, Xiaohui Xie, Zhangyang Wang

Undistillable: Making A Nasty Teacher That CANNOT teach students "Undistillable: Making A Nasty Teacher That CANNOT teach students" Haoyu Ma, Tianlong

Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

Details about the wide minima density hypothesis and metrics to compute width of a minima

wide-minima-density-hypothesis Details about the wide minima density hypothesis and metrics to compute width of a minima This repo presents the wide m

Releases(v4.0.0)
Owner
Sayak Paul
Trying to learn how machines learn.
Sayak Paul
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
PyTorch Personal Trainer: My framework for deep learning experiments

Alex's PyTorch Personal Trainer (ptpt) (name subject to change) This repository contains my personal lightweight framework for deep learning projects

Alex McKinney 8 Jul 14, 2022
Official Pytorch Implementation of GraphiT

GraphiT: Encoding Graph Structure in Transformers This repository implements GraphiT, described in the following paper: Grégoire Mialon*, Dexiong Chen

Inria Thoth 80 Nov 27, 2022
A lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look At CoefficienTs)

Real-time Instance Segmentation and Lane Detection This is a lane detection integrated Real-time Instance Segmentation based on YOLACT (You Only Look

Jin 4 Dec 30, 2022
This is a five-step framework for the development of intrusion detection systems (IDS) using machine learning (ML) considering model realization, and performance evaluation.

AB-TRAP: building invisibility shields to protect network devices The AB-TRAP framework is applicable to the development of Network Intrusion Detectio

Lab-C2DC - Laboratory of Command and Control and Cyber-security 17 Jan 04, 2023
Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video Qualtitative result Paper teaser video Introduction This r

Hongsuk Choi 215 Jan 06, 2023
Optimus: the first large-scale pre-trained VAE language model

Optimus: the first pre-trained Big VAE language model This repository contains source code necessary to reproduce the results presented in the EMNLP 2

314 Dec 19, 2022
An executor that performs image segmentation on fashion items

ClothingSegmenter U2NET fashion image/clothing segmenter based on https://github.com/levindabhi/cloth-segmentation Overview The ClothingSegmenter exec

Jina AI 5 Mar 30, 2022
Code repository for the paper: Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild (ICCV 2021)

Hierarchical Kinematic Probability Distributions for 3D Human Shape and Pose Estimation from Images in the Wild Akash Sengupta, Ignas Budvytis, Robert

Akash Sengupta 149 Dec 14, 2022
Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras

Use stochastic processes to generate samples and use them to train a fully-connected neural network based on Keras which will then be used to generate residuals

Federico Lopez 2 Jan 14, 2022
CM building dataset Timisoara

CM_building_dataset_Timisoara Date created: Febr-2020 The Timi\c{s}oara Building Dataset - TMBuD - is composed of 160 images with the resolution of 76

Orhei Ciprian 5 Sep 07, 2022
Simple Linear 2nd ODE Solver GUI - A 2nd constant coefficient linear ODE solver with simple GUI using euler's method

Simple_Linear_2nd_ODE_Solver_GUI Description It is a 2nd constant coefficient li

:) 4 Feb 05, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Code for the paper "SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness" (NeurIPS 2021)

SmoothMix: Training Confidence-calibrated Smoothed Classifiers for Certified Robustness (NeurIPS2021) This repository contains code for the paper "Smo

Jongheon Jeong 17 Dec 27, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
High performance distributed framework for training deep learning recommendation models based on PyTorch.

High performance distributed framework for training deep learning recommendation models based on PyTorch.

340 Dec 30, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot

GPT-Code-Clippy (GPT-CC) is an open source version of GitHub Copilot, a language model -- based on GPT-3, called GPT-Codex -- that is fine-tuned on publicly available code from GitHub.

2.3k Jan 09, 2023
A dead simple python wrapper for darknet that works with OpenCV 4.1, CUDA 10.1

What Dead simple python wrapper for Yolo V3 using AlexyAB's darknet fork. Works with CUDA 10.1 and OpenCV 4.1 or later (I use OpenCV master as of Jun

Pliable Pixels 6 Jan 12, 2022