Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

Overview

LUPerson-NL

Large-Scale Pre-training for Person Re-identification with Noisy Labels (LUPerson-NL)

The repository is for our CVPR2022 paper Large-Scale Pre-training for Person Re-identification with Noisy Labels.

LUPerson-NL Dataset

LUPerson-NL is currently the largest noisy annotated Person Re-identification dataset without humuan labelling efforts, which is used for Pre-training. LUPerson-NL consists of 10M images of over 430K identities extracted from 21K street-view videos and covers a much diverse range of capturing environments.

Details can be found at ./LUP-NL.

Pre-trained Models

Model link
ResNet50 R50 code:pr50
ResNet101 R101 code:r101
ResNet152 R152 code:r152

Finetuned Results

For MGN with ResNet50:

Dataset mAP cmc1 link
MSMT17 68.0 86.0 -
DukeMTMC 84.3 92.0 -
Market1501 91.9 96.6 -
CUHK03-L 80.4 80.9 -

For MGN with ResNet101:

Dataset mAP cmc1 path
MSMT17 70.8 87.1 -
DukeMTMC 85.5 92.8 -
Market1501 92.5 96.9 -
CUHK03-L 80.5 81.2 -

For MGN with ResNet152:

Dataset mAP cmc1 path
MSMT17 71.6 87.5 -
DukeMTMC 85.6 92.4 -
Market1501 92.7 96.8 -
CUHK03-L 80.6 81.2 -

Citation

If you find this code useful for your research, please cite our paper.

@article{fu2020unsupervised,
  title={Unsupervised Pre-training for Person Re-identification},
  author={Fu, Dengpan and Chen, Dongdong and Bao, Jianmin and Yang, Hao and Yuan, Lu and Zhang, Lei and Li, Houqiang and Chen, Dong},
  journal={Proceedings of the IEEE conference on computer vision and pattern recognition},
  year={2021}
}
@article{fu2022large,
  title={Large-Scale Pre-training for Person Re-identification with Noisy Labels},
  author={Fu, Dengpan and Chen, Dongdong and Yang, Hao and Bao, Jianmin and Yuan, Lu and Zhang, Lei and Li, Houqiang and Wen, Fang and Chen, Dong},
  journal={arXiv preprint arXiv:2203.16533},
  year={2022}
}
Source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network

D-HAN The source code of D-HAN This is the source code of D-HAN: Dynamic News Recommendation with Hierarchical Attention Network. However, only the co

30 Sep 22, 2022
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
PyGAD, a Python 3 library for building the genetic algorithm and training machine learning algorithms (Keras & PyTorch).

PyGAD: Genetic Algorithm in Python PyGAD is an open-source easy-to-use Python 3 library for building the genetic algorithm and optimizing machine lear

Ahmed Gad 1.1k Dec 26, 2022
Soomvaar is the repo which 🏩 contains different collection of 👨‍💻🚀code in Python and 💫✨Machine 👬🏼 learning algorithms📗📕 that is made during 📃 my practice and learning of ML and Python✨💥

Soomvaar 📌 Introduction Soomvaar is the collection of various codes implement in machine learning and machine learning algorithms with python on coll

Felix-Ayush 42 Dec 30, 2022
This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

This is an open-source toolkit for Heterogeneous Graph Neural Network(OpenHGNN) based on DGL [Deep Graph Library] and PyTorch.

BUPT GAMMA Lab 519 Jan 02, 2023
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
Group Fisher Pruning for Practical Network Compression(ICML2021)

Group Fisher Pruning for Practical Network Compression (ICML2021) By Liyang Liu*, Shilong Zhang*, Zhanghui Kuang, Jing-Hao Xue, Aojun Zhou, Xinjiang W

Shilong Zhang 129 Dec 13, 2022
This toolkit provides codes to download and pre-process the SLUE datasets, train the baseline models, and evaluate SLUE tasks.

slue-toolkit We introduce Spoken Language Understanding Evaluation (SLUE) benchmark. This toolkit provides codes to download and pre-process the SLUE

ASAPP Research 39 Sep 21, 2022
The Balloon Learning Environment - flying stratospheric balloons with deep reinforcement learning.

Balloon Learning Environment Docs The Balloon Learning Environment (BLE) is a simulator for stratospheric balloons. It is designed as a benchmark envi

Google 87 Dec 25, 2022
Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

Modeling Category-Selective Cortical Regions with Topographic Variational Autoencoders

1 Oct 11, 2021
Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker

Example Of Fine-Tuning BERT For Named-Entity Recognition Task And Preparing For Cloud Deployment Using Flask, React, And Docker This repository contai

Nikita 12 Dec 14, 2022
Improving Convolutional Networks via Attention Transfer (ICLR 2017)

Attention Transfer PyTorch code for "Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Tran

Sergey Zagoruyko 1.4k Dec 23, 2022
The first public PyTorch implementation of Attentive Recurrent Comparators

arc-pytorch PyTorch implementation of Attentive Recurrent Comparators by Shyam et al. A blog explaining Attentive Recurrent Comparators Visualizing At

Sanyam Agarwal 150 Oct 14, 2022
Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweeper.

Minesweeper-AI Created as part of CS50 AI's coursework. This AI makes use of knowledge entailment to calculate the best probabilities to win Minesweep

Beckham 0 Jul 20, 2022
Pytorch implementation of our paper under review — Lottery Jackpots Exist in Pre-trained Models

Lottery Jackpots Exist in Pre-trained Models (Paper Link) Requirements Python = 3.7.4 Pytorch = 1.6.1 Torchvision = 0.4.1 Reproduce the Experiment

Yuxin Zhang 27 Jun 28, 2022
CURL: Contrastive Unsupervised Representations for Reinforcement Learning

CURL Rainbow Status: Archive (code is provided as-is, no updates expected) This is an implementation of CURL: Contrastive Unsupervised Representations

Aravind Srinivas 46 Dec 12, 2022
Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021)

Substrate_Mediated_Invasion Julia and Matlab codes to simulated all problems in El-Hachem, McCue and Simpson (2021) 2DSolver.jl reproduces the simulat

Matthew Simpson 0 Nov 09, 2021
Wanli Li and Tieyun Qian: Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction, IJCNN 2021

MRefG Wanli Li and Tieyun Qian: "Exploit a Multi-head Reference Graph for Semi-supervised Relation Extraction", IJCNN 2021 1. Requirements To reproduc

万理 5 Jul 26, 2022
Building blocks for uncertainty-aware cycle consistency presented at NeurIPS'21.

UncertaintyAwareCycleConsistency This repository provides the building blocks and the API for the work presented in the NeurIPS'21 paper Robustness vi

EML Tübingen 19 Dec 12, 2022
State of the Art Neural Networks for Deep Learning

pyradox This python library helps you with implementing various state of the art neural networks in a totally customizable fashion using Tensorflow 2

Ritvik Rastogi 60 May 29, 2022