LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021)

Related tags

Deep LearningLV-BERT
Overview

LV-BERT

Introduction

In this repo, we introduce LV-BERT by exploiting layer variety for BERT. For detailed description and experimental results, please refer to our paper LV-BERT: Exploiting Layer Variety for BERT (Findings of ACL 2021).

Requirements

  • Python 3.6
  • TensorFlow 1.15
  • numpy
  • scikit-learn

Experiments

Firstly, set your data dir (absolute) to place datasets and models by

DATA_DIR=/path/to/data/dir

Fine-tining

We give the instruction to fine-tune a pre-trained LV-BERT-small (13M parameters) on GLUE. You can refer to this Google Colab notebook for a quick example. All models of different are provided this Google Drive folder. The models are pre-trained 1M steps with sequence length 128 to save compute. *_seq512 named models are trained for more 100K steps with sequence length 512 whichs are used for long-sequence tasks like SQuAD. See our paper for more details on model performance.

  1. Create your data directory.
mkdir -p $DATA_DIR/models && cp vocab.txt $DATA_DIR/

Put the pre-trained model in the corresponding directory

mv lv-bert_small $DATA_DIR/models/
  1. Download the GLUE data by running
python3 download_glue_data.py
  1. Set up the data by running
cd glue_data && mv CoLA cola && mv MNLI mnli && mv MRPC mrpc && mv QNLI qnli && mv QQP qqp && mv RTE rte && mv SST-2 sst && mv STS-B sts && mv diagnostic/diagnostic.tsv mnli && mkdir -p $DATA_DIR/finetuning_data && mv * $DATA_DIR/finetuning_data && cd ..
  1. Fine-tune the model by running
bash finetune.sh $DATA_DIR

PS: (a) You can test different tasks by changing configs in finetune.sh. (b) Some of the datasets on GLUE are small, causing that the results may vary substantially for different random seeds. The same as ELECTRA, we report the median of 10 fine-tuning runs from the same pre-trained model for each result.

Pre-training

We give the instruction to pre-train LV-BERT-small (13M parameters) using the OpenWebText corpus.

  1. First download the OpenWebText pre-traing corpus (12G).

  2. After downloading the pre-training corpus, build the pre-training dataset tf-record by running

bash build_data.sh $DATA_DIR
  1. Then, pre-train the model by running
bash pretrain.sh $DATA_DIR

Bibtex

@inproceedings{yu2021lv-bert,
        author = {Yu, Weihao and Jiang, Zihang and Chen, Fei, Hou, Qibin and Feng, Jiashi},
        title = {LV-BERT: Exploiting Layer Variety for BERT},
        booktitle = {Findings of ACL},
        month = {August},
        year = {2021}
}

Reference

This repo is based on the repo ELECTRA.

Owner
Weihao Yu
PhD student at NUS
Weihao Yu
GANimation: Anatomically-aware Facial Animation from a Single Image (ECCV'18 Oral) [PyTorch]

GANimation: Anatomically-aware Facial Animation from a Single Image [Project] [Paper] Official implementation of GANimation. In this work we introduce

Albert Pumarola 1.8k Dec 28, 2022
FNet Implementation with TensorFlow & PyTorch

FNet Implementation with TensorFlow & PyTorch. TensorFlow & PyTorch implementation of the paper "FNet: Mixing Tokens with Fourier Transforms". Overvie

Abdelghani Belgaid 1 Feb 12, 2022
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

A simplistic and efficient pure-python neural network library from Phys Whiz with CPU and GPU support.

Manas Sharma 19 Feb 28, 2022
Computational Pathology Toolbox developed by TIA Centre, University of Warwick.

TIA Toolbox Computational Pathology Toolbox developed at the TIA Centre Getting Started All Users This package is for those interested in digital path

Tissue Image Analytics (TIA) Centre 156 Jan 08, 2023
GAN JAX - A toy project to generate images from GANs with JAX

GAN JAX - A toy project to generate images from GANs with JAX This project aims to bring the power of JAX, a Python framework developped by Google and

Valentin Goldité 14 Nov 29, 2022
This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation).

FlatGCN This is the official Pytorch-version code of FlatGCN (Flattened Graph Convolutional Networks for Recommendation, submitted to ICASSP2022). Req

Dreamer 2 Aug 09, 2022
UltraGCN: An Ultra Simplification of Graph Convolutional Networks for Recommendation

UltraGCN This is our Pytorch implementation for our CIKM 2021 paper: Kelong Mao, Jieming Zhu, Xi Xiao, Biao Lu, Zhaowei Wang, Xiuqiang He. UltraGCN: A

XUEPAI 93 Jan 03, 2023
A PyTorch Implementation of Single Shot MultiBox Detector

SSD: Single Shot MultiBox Object Detector, in PyTorch A PyTorch implementation of Single Shot MultiBox Detector from the 2016 paper by Wei Liu, Dragom

Max deGroot 4.8k Jan 07, 2023
paper list in the area of reinforcenment learning for recommendation systems

paper list in the area of reinforcenment learning for recommendation systems

HenryZhao 23 Jun 09, 2022
Distributional Sliced-Wasserstein distance code

Distributional Sliced Wasserstein distance This is a pytorch implementation of the paper "Distributional Sliced-Wasserstein and Applications to Genera

VinAI Research 39 Jan 01, 2023
Nonnegative spatial factorization for multivariate count data

Nonnegative spatial factorization for multivariate count data This repository contains supporting code to facilitate reproducible analysis. For detail

Will Townes 24 Dec 19, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
Optimize Trading Strategies Using Freqtrade

Optimize trading strategy using Freqtrade Short demo on building, testing and optimizing a trading strategy using Freqtrade. The DevBootstrap YouTube

DevBootstrap 139 Jan 01, 2023
Randomizes the warps in a stock pokeemerald repo.

pokeemerald warp randomizer Randomizes the warps in a stock pokeemerald repo. Usage Instructions Install networkx and matplotlib via pip3 or similar.

Max Thomas 6 Mar 17, 2022
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Learning with Nonignorable Nonresponses‘

Graph-based joint model with Nonignorable Missingness (GNM) This is a Keras implementation of the GNM model in paper ’Graph-Based Semi-Supervised Lear

Fan Zhou 2 Apr 17, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022