Measure WWjj polarization fraction

Overview

WlWl Polarization

Measure WWjj polarization fraction

sm sm_lltt sm_lttl

Paper: arXiv:2109.09924
Notice: This code can only be used for the inference process, if you want to train your own model, please contact [email protected].

Requirements

  • Both Linux and Windows are supported.
  • 64-bit Python3.6(or higher, recommend 3.8) installation.
  • Tensorflow2.x(recommend 2.6), Numpy(recommend 1.19.5), Matplotlib(recommend 3.4.2)
  • One or more high-end NVIDIA GPUs(at least 4 GB of DRAM), NVIDIA drivers, CUDA(recommend 11.4) toolkit and cuDNN(recommend 8.2.x).

Preparing dataset

The raw dataset needs to be transformed before it can be imported into the model.

  • You need to create a raw dataset(we provide a test dataset, stored in ./raw/), the data structure is as follows:
The file has N events:
   Event 1
   Event 2
   ...
   Event N
One event for every 6 lines:
   1. first lepton 
   2. second lepton 
   3. first FB jet 
   4. second FB jet 
   5. MET 
   6. remaining jet 
Each line has the following five columns of elements:
   1.ParticleID  2.Px  3.Py  4.Pz  5.E
The format of an event in the dataset is as follows:
   ...
   -1.0  166.023   5.35817   10.784    166.459
   1.0   -36.1648  -64.1513  -28.9064  79.113
   7.0   -11.3233  -39.6316  -318.178  320.85
   7.0   -34.2795  22.0472   622.79    624.128
   0.0   -22.6711  52.8976   -422.567  426.468
   6.0   -49.9758  29.3283   274.517   294.098
   ...

ParticleID: 1 for electron, 2 for muon, 3 for tau, 4 for b-jet, 5 for normal jet, 0 for met, 6 for remaining jets, 7 for forward backward jet, signs represent electric charge.

  • Use the command python create_dataset.py YOUR_RAWDATA_PATH, it will create a file with the same name as YOUR_RAWDATA_PATH in the ./dataset/.

Using pre-trained models

After completing the preparation of the dataset, you can use the model to predict the polarization fraction.

  • Pre-trained weights are placed in ./weights/.
  • Use the command python inference.py --dataset YOUR_TRADATA_NAME --model_name <MODEL_NAME> --energy_level <ENERGY_LEVEL>, it will give the polarization fractions.

Notice: <ENERGY_LEVEL> should correspond to the collision energy of events.

Example

Run the following command to get the polarization fractions for the standard model:

python create_dataset.py ./raw/sm.dat
python inference.py --dataset sm --model_name TRANS --energy_level 13

Citation

@misc{li2021polarization,
    title={Polarization measurement for the dileptonic channel of $W^+ W^-$ scattering using generative adversarial network},
    author={Jinmian Li and Cong Zhang and Rao Zhang},
    year={2021},
    eprint={2109.09924},
    archivePrefix={arXiv},
    primaryClass={hep-ph}
}
LBBA-boosted WSOD

LBBA-boosted WSOD Summary Our code is based on ruotianluo/pytorch-faster-rcnn and WSCDN Sincerely thanks for your resources. Newer version of our code

Martin Dong 20 Sep 19, 2022
A Deep Learning based project for creating line art portraits.

ArtLine The main aim of the project is to create amazing line art portraits. Sounds Intresting,let's get to the pictures!! Model-(Smooth) Model-(Quali

Vijish Madhavan 3.3k Jan 07, 2023
NeurIPS 2021, "Fine Samples for Learning with Noisy Labels"

[Official] FINE Samples for Learning with Noisy Labels This repository is the official implementation of "FINE Samples for Learning with Noisy Labels"

mythbuster 27 Dec 23, 2022
The open source code of SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation.

SA-UNet: Spatial Attention U-Net for Retinal Vessel Segmentation(ICPR 2020) Overview This code is for the paper: Spatial Attention U-Net for Retinal V

Changlu Guo 151 Dec 28, 2022
A 3D Dense mapping backend library of SLAM based on taichi-Lang designed for the aerial swarm.

TaichiSLAM This project is a 3D Dense mapping backend library of SLAM based Taichi-Lang, designed for the aerial swarm. Intro Taichi is an efficient d

XuHao 230 Dec 19, 2022
CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY

M-BERT-Study CROSS-LINGUAL ABILITY OF MULTILINGUAL BERT: AN EMPIRICAL STUDY Motivation Multilingual BERT (M-BERT) has shown surprising cross lingual a

CogComp 1 Feb 28, 2022
Transformer in Computer Vision

Transformer-in-Vision A paper list of some recent Transformer-based CV works. If you find some ignored papers, please open issues or pull requests. **

506 Dec 26, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
The Body Part Regression (BPR) model translates the anatomy in a radiologic volume into a machine-interpretable form.

Copyright © German Cancer Research Center (DKFZ), Division of Medical Image Computing (MIC). Please make sure that your usage of this code is in compl

MIC-DKFZ 40 Dec 18, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
The code of Zero-shot learning for low-light image enhancement based on dual iteration

Zero-shot-dual-iter-LLE The code of Zero-shot learning for low-light image enhancement based on dual iteration. You can get the real night image tests

1 Mar 18, 2022
[BMVC'21] Official PyTorch Implementation of Grounded Situation Recognition with Transformers

Grounded Situation Recognition with Transformers Paper | Model Checkpoint This is the official PyTorch implementation of Grounded Situation Recognitio

Junhyeong Cho 18 Jul 19, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
A Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images.

Lobe This is a Home Assistant custom component for Lobe. Lobe is an AI tool that can classify images. This component lets you easily use an exported m

Kendell R 4 Feb 28, 2022
YOLO5Face: Why Reinventing a Face Detector (https://arxiv.org/abs/2105.12931)

Introduction Yolov5-face is a real-time,high accuracy face detection. Performance Single Scale Inference on VGA resolution(max side is equal to 640 an

DeepCam Shenzhen 1.4k Jan 07, 2023
A benchmark framework for Tensorflow

TensorFlow benchmarks This repository contains various TensorFlow benchmarks. Currently, it consists of two projects: PerfZero: A benchmark framework

1.1k Dec 30, 2022
Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Exercises and project documentation for the 3. Developing your First ML Workflow of the AWS Machine Learning Engineer Nanodegree Program

Simona Mircheva 1 Jan 13, 2022
shufflev2-yolov5:lighter, faster and easier to deploy

shufflev2-yolov5: lighter, faster and easier to deploy. Evolved from yolov5 and the size of model is only 1.7M (int8) and 3.3M (fp16). It can reach 10+ FPS on the Raspberry Pi 4B when the input size

pogg 1.5k Jan 05, 2023
Official code for 'Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentationon Complex Urban Driving Scenes'

PEBAL This repo contains the Pytorch implementation of our paper: Pixel-wise Energy-biased Abstention Learning for Anomaly Segmentation on Complex Urb

Yu Tian 117 Jan 03, 2023