Event sourced bank - A wide-and-shallow example using the Python event sourcing library

Overview

Event Sourced Bank

A "wide but shallow" example of using the Python event sourcing library. "Wide" in the sense that it covers most features in the library; "shallow" in the sense that the use of each is trivial. It's purpose is not to be an authentic bank: it's to demonstrate the various library components in an example where the domain model itself affords no learning curve.

Overview

The domain model is simple. It comprises only 2 classes, both in the domain model file. Account models a trivial bank account as an event-sourced Domain-Driven Design Aggregate. Ledger is an equally simple abstraction of a ledger, again modelled as a DDD Aggregate.

The idea is that all transactions on all accounts get recorded in the ledger:

  • Each transaction on each account generates an event;
  • The ledger listens to those events, and is updated accordingly.

Implementation

The Account and Ledger aggregates are implemented using the eventsourcing library's Aggregate base class.

Each aggregate is wrapped in a service. The AccountService uses the eventsourcing library's Application class, and provides an API for creating/retrieving accounts and then acting on them. The LedgerService is implemented using the library's ProcessApplication. Its purpose is to follow all transactions on all accounts, so a single ledger tracks the overall balance in the bank.

The EventSourcedBank class ties everything together. It wires the AccountService and LedgerService together, so transactions on Accounts are recorded in the Ledger. There's a minimal main that creates a system and runs a few transactions through.

Snapshots

The eventsourcing lib reconstructs aggregates from the events that create and evolve them. That's consistent with the fundamental notion of event sourcing: store the events that change state over time, rather than storing the current state directly. It can, however, give rise to a performance problem with long-running aggregates. Each time an aggregate is retrieved - such as the calls to repository.get(account_id) in the AccountService - the aggregate is re-constructed from its event history. That history grown monotonically over time. Reconstructing the aggregate therefore takes proportionally longer as the aggregate evolves.

The library provides snapshots as a way to deal with this issue. It's as the name suggests; snapshots store the aggregate's state at given points. Re-constructing from a snapshot therefore removes the need to iterate over history prior to the snapshot being taken. Snapshots are well explained in the docs so not worth repeating here. Suffice to say there are various options that cover the spectrum from simple defaults to highly configurable options.

Given that this example intends to be "wide and shallow", it's appropriate to include the snapshotting construct. It's equally appropriate to use the simplest thing that could possibly work. Hence each of the services (AccountService, LedgerService) employ automatic snapshotting. That's enabled by a single line of code in each class; e.g.

  class AccountService(Application):
     snapshotting_intervals = {Account: 50}

Installation

  1. Clone this repo:

     $ cd /my/projects/dir
     $ git clone https://github.com/sfinnie/event_sourced_bank.git
     $ cd event_sourced_bank
    
  2. (optional but recommended): create a virtual environment:

     $ python3 -m venv venv
     $ source venv/bin/activate
    
  3. Install dependencies

     $ python3 -m pip install -U pip
     $ python3 -m pip install eventsourcing pytest
    

Running

There's a minimal, trivial, script to run the app:

$ python3 main.py

Testing

There are a few tests, more as examples than a comprehensive test suite at the moment. To be enhanced. To run:

$ pytest
Extracts data from the database for a graph-node and stores it in parquet files

subgraph-extractor Extracts data from the database for a graph-node and stores it in parquet files Installation For developing, it's recommended to us

Cardstack 0 Jan 10, 2022
Diffusion Probabilistic Models for 3D Point Cloud Generation (CVPR 2021)

Diffusion Probabilistic Models for 3D Point Cloud Generation [Paper] [Code] The official code repository for our CVPR 2021 paper "Diffusion Probabilis

Shitong Luo 323 Jan 05, 2023
Real-Time Seizure Detection using EEG: A Comprehensive Comparison of Recent Approaches under a Realistic Setting

Real-Time Seizure Detection using Electroencephalogram (EEG) This is the repository for "Real-Time Seizure Detection using EEG: A Comprehensive Compar

AITRICS 30 Dec 17, 2022
Dense Prediction Transformers

Vision Transformers for Dense Prediction This repository contains code and models for our paper: Vision Transformers for Dense Prediction René Ranftl,

Intelligent Systems Lab Org 1.3k Jan 02, 2023
Easy to use Audio Tagging in PyTorch

Audio Classification, Tagging & Sound Event Detection in PyTorch Progress: Fine-tune on audio classification Fine-tune on audio tagging Fine-tune on s

sithu3 15 Dec 22, 2022
DeconvNet : Learning Deconvolution Network for Semantic Segmentation

DeconvNet: Learning Deconvolution Network for Semantic Segmentation Created by Hyeonwoo Noh, Seunghoon Hong and Bohyung Han at POSTECH Acknowledgement

Hyeonwoo Noh 325 Oct 20, 2022
A Kitti Road Segmentation model implemented in tensorflow.

KittiSeg KittiSeg performs segmentation of roads by utilizing an FCN based model. The model achieved first place on the Kitti Road Detection Benchmark

Marvin Teichmann 890 Jan 04, 2023
Image Super-Resolution by Neural Texture Transfer

SRNTT: Image Super-Resolution by Neural Texture Transfer Tensorflow implementation of the paper Image Super-Resolution by Neural Texture Transfer acce

Zhifei Zhang 413 Nov 30, 2022
Learning to Prompt for Vision-Language Models.

CoOp Paper: Learning to Prompt for Vision-Language Models Authors: Kaiyang Zhou, Jingkang Yang, Chen Change Loy, Ziwei Liu CoOp (Context Optimization)

Kaiyang 679 Jan 04, 2023
A project studying the influence of communication in multi-objective normal-form games

Communication in Multi-Objective Normal-Form Games This repo consists of five different types of agents that we have used in our study of communicatio

Willem Röpke 0 Dec 17, 2021
An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicity.

Fast Face Classification (F²C) This is the code of our paper An Efficient Training Approach for Very Large Scale Face Recognition or F²C for simplicit

33 Jun 27, 2021
Extreme Dynamic Classifier Chains - XGBoost for Multi-label Classification

Extreme Dynamic Classifier Chains Classifier chains is a key technique in multi-label classification, sinceit allows to consider label dependencies ef

6 Oct 08, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
The Self-Supervised Learner can be used to train a classifier with fewer labeled examples needed using self-supervised learning.

Published by SpaceML • About SpaceML • Quick Colab Example Self-Supervised Learner The Self-Supervised Learner can be used to train a classifier with

SpaceML 92 Nov 30, 2022
Analyses of the individual electric field magnitudes with Roast.

Aloi Davide - PhD Student (UoB) Analysis of electric field magnitudes (wp2a dataset only at the moment) and correlation analysis with Dynamic Causal M

Davide Aloi 7 Dec 15, 2022
Project page for End-to-end Recovery of Human Shape and Pose

End-to-end Recovery of Human Shape and Pose Angjoo Kanazawa, Michael J. Black, David W. Jacobs, Jitendra Malik CVPR 2018 Project Page Requirements Pyt

1.4k Dec 29, 2022
DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort

DatasetGAN This is the official code and data release for: DatasetGAN: Efficient Labeled Data Factory with Minimal Human Effort Yuxuan Zhang*, Huan Li

302 Jan 05, 2023
Repo for 2021 SDD assessment task 2, by Felix, Anna, and James.

SoftwareTask2 Repo for 2021 SDD assessment task 2, by Felix, Anna, and James. File/folder structure: helloworld.py - demonstrates various map backgrou

3 Dec 13, 2022
CTRL-C: Camera calibration TRansformer with Line-Classification

CTRL-C: Camera calibration TRansformer with Line-Classification This repository contains the official code and pretrained models for CTRL-C (Camera ca

57 Nov 14, 2022
Official codebase for Decision Transformer: Reinforcement Learning via Sequence Modeling.

Decision Transformer Lili Chen*, Kevin Lu*, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Michael Laskin, Pieter Abbeel, Aravind Srinivas†, and Igor M

Kevin Lu 1.4k Jan 07, 2023