This repository contains the source code and data for reproducing results of Deep Continuous Clustering paper

Overview

Deep Continuous Clustering

Introduction

This is a Pytorch implementation of the DCC algorithms presented in the following paper (paper):

Sohil Atul Shah and Vladlen Koltun. Deep Continuous Clustering.

If you use this code in your research, please cite our paper.

@article{shah2018DCC,
	author    = {Sohil Atul Shah and Vladlen Koltun},
	title     = {Deep Continuous Clustering},
	journal   = {arXiv:1803.01449},
	year      = {2018},
}

The source code and dataset are published under the MIT license. See LICENSE for details. In general, you can use the code for any purpose with proper attribution. If you do something interesting with the code, we'll be happy to know. Feel free to contact us.

Requirement

Pretraining SDAE

Note: Please find required files and checkpoints for MNIST dataset shared here.

Please create new folder for each dataset under the data folder. Please follow the structure of mnist dataset. The training and the validation data for each dataset must be placed under their respective folder.

We have already provided train and test data files for MNIST dataset. For example, one can start pretraining of SDAE from console as follows:

$ python pretraining.py --data mnist --tensorboard --id 1 --niter 50000 --lr 10 --step 20000

Different settings for total iterations, learning rate and stepsize may be required for other datasets. Please find the details under the comment section inside the pretraining file.

Extracting Pretrained Features

The features from the pretrained SDAE network are extracted as follows:

$ python extract_feature.py --data mnist --net checkpoint_4.pth.tar --features pretrained

By default, the model checkpoint for pretrained SDAE NW is stored under results.

Copying mkNN graph

The copyGraph program is used to merge the preprocessed mkNN graph (using the code provided by RCC) and the extracted pretrained features. Note the mkNN graph is built on the original and not on the SDAE features.

$ python copyGraph.py --data mnist --graph pretrained.mat --features pretrained.pkl --out pretrained

The above command assumes that the graph is stored in the pretrained.mat file and the merged file is stored back to pretrained.mat file.

DCC searches for the file with name pretrained.mat. Hence please retain the name.

Running Deep Continuous Clustering

Once the features are extracted and graph details merged, one can start training DCC algorithm.

For sanity check, we have also provided a pretrained.mat and SDAE model files for the MNIST dataset located under the data folder. For example, one can run DCC on MNIST from console as follows:

$ python DCC.py --data mnist --net checkpoint_4.pth.tar --tensorboard --id 1

The other preprocessed graph files can be found in gdrive folder as provided by the RCC.

Evaluation

Towards the end of run of DCC algorithm, i.e., once the stopping criterion is met, DCC starts evaluating the cluster assignment for the total dataset. The evaluation output is logged into tensorboard logger. The penultimate evaluated output is reported in the paper.

Like RCC, the AMI definition followed here differs slightly from the default definition found in the sklearn package. To match the results listed in the paper, please modify it accordingly.

The tensorboard logs for both pretraining and DCC will be stored in the "runs/DCC" folder under results. The final embedded features 'U' and cluster assignment for each sample is saved in 'features.mat' file under results.

Creating input

The input file for SDAE pretraining, traindata.mat and testdata.mat, stores the features of the 'N' data samples in a matrix format N x D. We followed 4:1 ratio to split train and validation data. The provided make_data.py can be used to build training and validation data. The distinction of training and validation set is used only for the pretraining stage. For end-to-end training, there is no such distinction in unsupervised learning and hence all data has been used.

To construct mkNN edge set and to create preprocessed input file, pretrained.mat, from the raw feature file, use edgeConstruction.py released by RCC. Please follow the instruction therein. Note that mkNN graph is built on the complete dataset. For simplicity, code (post pretraining phase) follows the data ordering of [trainset, testset] to arrange the data. This should be consistent even with mkNN construction.

Understanding Steps Through Visual Example

Generate 2D clustered data with

python make_data.py --data easy

This creates 3 clusters where the centers are colinear to each other. We would then expect to only need 1 dimensional latent space (either x or y) to uniquely project the data onto the line passing through the center of the clusters.

generated ground truth

Construct mKNN graph with

python edgeConstruction.py --dataset easy --samples 600

Pretrain SDAE with

python pretraining.py --data easy --tensorboard --id 1 --niter 500 --dim 1 --lr 0.0001 --step 300

You can debug the pretraining losses using tensorboard (needs tensorflow) with

tensorboard --logdir data/easy/results/runs/pretraining/1/

Then navigate to the http link that is logged in console.

Extract pretrained features

python extract_feature.py --data easy --net checkpoint_2.pth.tar --features pretrained --dim 1

Merge preprocessed mkNN graph and the pretrained features with

python copyGraph.py --data easy --graph pretrained.mat --features pretrained.pkl --out pretrained

Run DCC with

python DCC.py --data easy --net checkpoint_2.pth.tar --tensorboard --id 1 --dim 1

Debug and show how the representatives shift over epochs with

tensorboard --logdir data/easy/results/runs/DCC/1/ --samples_per_plugin images=100

Pretraining and DCC together in one script

See easy_example.py for the previous easy to visualize example all steps done in one script. Execute the script to perform the previous section all together. You can visualize the results, such as how the representatives drift over iterations with the tensorboard command above and navigating to the Images tab.

With an autoencoder, the representatives shift over epochs like: shift with autoencoder

Owner
Sohil Shah
Research Scientist
Sohil Shah
Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting

Disturbing Target Values for Neural Network regularization: attacking the loss layer to prevent overfitting 1. Classification Task PyTorch implementat

Yongho Kim 0 Apr 24, 2022
A lossless neural compression framework built on top of JAX.

Kompressor Branch CI Coverage main (active) main development A neural compression framework built on top of JAX. Install setup.py assumes a compatible

Rosalind Franklin Institute 2 Mar 14, 2022
Python library to receive live stream events like comments and gifts in realtime from TikTok LIVE.

TikTokLive A python library to connect to and read events from TikTok's LIVE service A python library to receive and decode livestream events such as

Isaac Kogan 277 Dec 23, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
CPPE - 5 (Medical Personal Protective Equipment) is a new challenging object detection dataset

CPPE - 5 CPPE - 5 (Medical Personal Protective Equipment) is a new challenging dataset with the goal to allow the study of subordinate categorization

Rishit Dagli 53 Dec 17, 2022
PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

PyTorch implementation of the paper Ultra Fast Structure-aware Deep Lane Detection

1.4k Jan 06, 2023
MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution

Octave Convolution MXNet implementation for: Drop an Octave: Reducing Spatial Redundancy in Convolutional Neural Networks with Octave Convolution Imag

Meta Research 549 Dec 28, 2022
A modular domain adaptation library written in PyTorch.

A modular domain adaptation library written in PyTorch.

Kevin Musgrave 225 Dec 29, 2022
[ICCV 2021] Official Tensorflow Implementation for "Single Image Defocus Deblurring Using Kernel-Sharing Parallel Atrous Convolutions"

KPAC: Kernel-Sharing Parallel Atrous Convolutional block This repository contains the official Tensorflow implementation of the following paper: Singl

Hyeongseok Son 50 Dec 29, 2022
ReferFormer - Official Implementation of ReferFormer

The official implementation of the paper: Language as Queries for Referring Vide

Jonas Wu 232 Dec 29, 2022
Real-time Object Detection for Streaming Perception, CVPR 2022

StreamYOLO Real-time Object Detection for Streaming Perception Jinrong Yang, Songtao Liu, Zeming Li, Xiaoping Li, Sun Jian Real-time Object Detection

Jinrong Yang 237 Dec 27, 2022
Code accompanying the NeurIPS 2021 paper "Generating High-Quality Explanations for Navigation in Partially-Revealed Environments"

Generating High-Quality Explanations for Navigation in Partially-Revealed Environments This work presents an approach to explainable navigation under

RAIL Group @ George Mason University 1 Oct 28, 2022
Captcha-tensorflow - Image Captcha Solving Using TensorFlow and CNN Model. Accuracy 90%+

Captcha Solving Using TensorFlow Introduction Solve captcha using TensorFlow. Learn CNN and TensorFlow by a practical project. Follow the steps, run t

Jackon Yang 869 Jan 06, 2023
The Dual Memory is build from a simple CNN for the deep memory and Linear Regression fro the fast Memory

Simple-DMA a simple Dual Memory Architecture for classifications. based on the paper Dual-Memory Deep Learning Architectures for Lifelong Learning of

1 Jan 27, 2022
Code of paper Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification.

Interact, Embed, and EnlargE (IEEE): Boosting Modality-specific Representations for Multi-Modal Person Re-identification We provide the codes for repr

12 Dec 12, 2022
PyTorch-based framework for Deep Hedging

PFHedge: Deep Hedging in PyTorch PFHedge is a PyTorch-based framework for Deep Hedging. PFHedge Documentation Neural Network Architecture for Efficien

139 Dec 30, 2022
DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation

DCT-Mask: Discrete Cosine Transform Mask Representation for Instance Segmentation This project hosts the code for implementing the DCT-MASK algorithms

Alibaba Cloud 57 Nov 27, 2022
“英特尔创新大师杯”深度学习挑战赛 赛道3:CCKS2021中文NLP地址相关性任务

ccks2021-track3 CCKS2021中文NLP地址相关性任务-赛道三-冠军方案 团队:我的加菲鱼- wodejiafeiyu 初赛第二/复赛第一/决赛第一 前言 19年开始,陆陆续续参加了一些比赛,拿到过一些top,比较懒一直都没分享过,这次比较幸运又拿了top1,打算分享下 分类的任务

shaochenjie 131 Dec 31, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir.

NetScanner.py Ağ tarayıcı.Gönderdiği paketler ile ağa bağlı olan cihazların IP adreslerini gösterir. Linux'da Kullanımı: git clone https://github.com/

4 Aug 23, 2021