[CVPR'21] MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation

Overview

MonoRUn

MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation. CVPR 2021. [paper] Hansheng Chen, Yuyao Huang, Wei Tian*, Zhong Gao, Lu Xiong. (*Corresponding author: Wei Tian.)

This repository is the PyTorch implementation for MonoRUn. The codes are based on MMDetection and MMDetection3D, although we use our own data formats. The PnP C++ codes are modified from PVNet.

demo

Installation

Please refer to INSTALL.md.

Data preparation

Download the official KITTI 3D object dataset, including left color images, calibration files and training labels.

Download the train/val/test image lists [Google Drive | Baidu Pan, password: cj4u]. For training with LiDAR supervision, download the preprocessed object coordinate maps [Google Drive | Baidu Pan, password: fp3h].

Extract the downloaded archives according to the following folder structure. It is recommended to symlink the dataset root to $MonoRUn_ROOT/data. If your folder structure is different, you may need to change the corresponding paths in config files.

$MonoRUn_ROOT
├── configs
├── monorun
├── tools
├── data
│   ├── kitti
│   │   ├── testing
│   │   │   ├── calib
│   │   │   ├── image_2
│   │   │   └── test_list.txt
│   │   └── training
│   │       ├── calib
│   │       ├── image_2
│   │       ├── label_2
│   │       ├── obj_crd
│   │       ├── mono3dsplit_train_list.txt
│   │       ├── mono3dsplit_val_list.txt
│   │       └── trainval_list.txt

Run the preparation script to generate image metas:

cd $MonoRUn_ROOT
python tools/prepare_kitti.py

Train

cd $MonoRUn_ROOT

To train without LiDAR supervision:

python train.py configs/kitti_multiclass.py --gpu-ids 0 1

where --gpu-ids 0 1 specifies the GPU IDs. In the paper we use two GPUs for distributed training. The number of GPUs affects the mini-batch size. You may change the samples_per_gpu option in the config file to vary the number of images per GPU. If you encounter out of memory issue, add the argument --seed 0 --deterministic to save GPU memory.

To train with LiDAR supervision:

python train.py configs/kitti_multiclass_lidar_supv.py --gpu-ids 0 1

To view other training options:

python train.py -h

By default, logs and checkpoints will be saved to $MonoRUn_ROOT/work_dirs. You can run TensorBoard to plot the logs:

tensorboard --logdir $MonoRUn_ROOT/work_dirs

The above configs use the 3712-image split for training and the other split for validating. If you want to train on the full training set (train-val), use the config files with _trainval postfix.

Test

You can download the pretrained models:

  • kitti_multiclass.pth [Google Drive | Baidu Pan, password: 6bih] trained on KITTI training split
  • kitti_multiclass_lidar_supv.pth [Google Drive | Baidu Pan, password: nmdb] trained on KITTI training split
  • kitti_multiclass_lidar_supv_trainval.pth [Google Drive | Baidu Pan, password: hg2r] trained on KITTI train-val

To test and evaluate on the validation set using config at $CONFIG_PATH and checkpoint at $CPT_PATH:

python test.py $CONFIG_PATH $CPT_PATH --val-set --gpu-ids 0

To test on the test set and save detection results to $RESULT_DIR:

python test.py $CONFIG_PATH $CPT_PATH --result-dir $RESULT_DIR --gpu-ids 0

You can append the argument --show-dir $SHOW_DIR to save visualized results.

To view other testing options:

python test.py -h

Note: the training and testing scripts in the root directory are wrappers for the original scripts taken from MMDetection, which can be found in $MonoRUn_ROOT/tools. For advanced usage, please refer to the official MMDetection docs.

Demo

We provide a demo script to perform inference on images in a directory and save the visualized results. Example:

python demo/infer_imgs.py $KITTI_RAW_DIR/2011_09_30/2011_09_30_drive_0027_sync/image_02/data configs/kitti_multiclass_lidar_supv_trainval.py checkpoints/kitti_multiclass_lidar_supv_trainval.pth --calib demo/calib.csv --show-dir show/2011_09_30_drive_0027

Citation

If you find this project useful in your research, please consider citing:

@inproceedings{monorun2021, 
  author = {Hansheng Chen and Yuyao Huang and Wei Tian and Zhong Gao and Lu Xiong}, 
  title = {MonoRUn: Monocular 3D Object Detection by Reconstruction and Uncertainty Propagation}, 
  booktitle = {IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 
  year = {2021}
}
Owner
同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University)
同济大学智能汽车研究所综合感知研究组 ( Comprehensive Perception Research Group under Institute of Intelligent Vehicles, School of Automotive Studies, Tongji University)
ECLARE: Extreme Classification with Label Graph Correlations

ECLARE ECLARE: Extreme Classification with Label Graph Correlations @InProceedings{Mittal21b, author = "Mittal, A. and Sachdeva, N. and Agrawal

Extreme Classification 35 Nov 06, 2022
Code for the submitted paper Surrogate-based cross-correlation for particle image velocimetry

Surrogate-based cross-correlation (SBCC) This repository contains code for the submitted paper Surrogate-based cross-correlation for particle image ve

5 Jun 30, 2022
Poplar implementation of "Bundle Adjustment on a Graph Processor" (CVPR 2020)

Poplar Implementation of Bundle Adjustment using Gaussian Belief Propagation on Graphcore's IPU Implementation of CVPR 2020 paper: Bundle Adjustment o

Joe Ortiz 34 Dec 05, 2022
Self-labelling via simultaneous clustering and representation learning. (ICLR 2020)

Self-labelling via simultaneous clustering and representation learning 🆗 🆗 🎉 NEW models (20th August 2020): Added standard SeLa pretrained torchvis

Yuki M. Asano 469 Jan 02, 2023
GeoTransformer - Geometric Transformer for Fast and Robust Point Cloud Registration

Geometric Transformer for Fast and Robust Point Cloud Registration PyTorch imple

Zheng Qin 220 Jan 05, 2023
Various operations like path tracking, counting, etc by using yolov5

Object-tracing-with-YOLOv5 Various operations like path tracking, counting, etc by using yolov5

Pawan Valluri 5 Nov 28, 2022
NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem

NeuroLKH: Combining Deep Learning Model with Lin-Kernighan-Helsgaun Heuristic for Solving the Traveling Salesman Problem Liang Xin, Wen Song, Zhiguang

xinliangedu 33 Dec 27, 2022
DTCN IJCAI - Sequential prediction learning framework and algorithm

DTCN This is the implementation of our paper "Sequential Prediction of Social Me

Bobby 2 Jan 24, 2022
PyTorch implementation of D2C: Diffuison-Decoding Models for Few-shot Conditional Generation.

D2C: Diffuison-Decoding Models for Few-shot Conditional Generation Project | Paper PyTorch implementation of D2C: Diffuison-Decoding Models for Few-sh

Jiaming Song 90 Dec 27, 2022
Inteligência artificial criada para realizar interação social com idosos.

IA SONIA 4.0 A SONIA foi inspirada no assistente mais famoso do mundo e muito bem conhecido JARVIS. Todo mundo algum dia ja sonhou em ter o seu própri

Vinícius Azevedo 2 Oct 21, 2021
Code for layerwise detection of linguistic anomaly paper (ACL 2021)

Layerwise Anomaly This repository contains the source code and data for our ACL 2021 paper: "How is BERT surprised? Layerwise detection of linguistic

6 Dec 07, 2022
Deep Crop Rotation

Deep Crop Rotation Paper (to come very soon!) We propose a deep learning approach to modelling both inter- and intra-annual patterns for parcel classi

Félix Quinton 5 Sep 23, 2022
GUPNet - Geometry Uncertainty Projection Network for Monocular 3D Object Detection

GUPNet This is the official implementation of "Geometry Uncertainty Projection Network for Monocular 3D Object Detection". citation If you find our wo

Yan Lu 103 Dec 28, 2022
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Pytorch tutorials for Neural Style transfert

PyTorch Tutorials This tutorial is no longer maintained. Please use the official version: https://pytorch.org/tutorials/advanced/neural_style_tutorial

Alexis David Jacq 135 Jun 26, 2022
Reinforcement learning library in JAX.

Reinforcement learning library in JAX.

Yicheng Luo 96 Oct 30, 2022
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
Target Propagation via Regularized Inversion

Target Propagation via Regularized Inversion The present code implements an ideal formulation of target propagation using regularized inverses compute

Vincent Roulet 0 Dec 02, 2021
ELSED: Enhanced Line SEgment Drawing

ELSED: Enhanced Line SEgment Drawing This repository contains the source code of ELSED: Enhanced Line SEgment Drawing the fastest line segment detecto

Iago Suárez 125 Dec 31, 2022
Pansharpening by convolutional neural networks in the full resolution framework

Z-PNN: Zoom Pansharpening Neural Network Pansharpening by convolutional neural networks in the full resolution framework is a deep learning method for

20 Nov 24, 2022