Spectralformer: Rethinking hyperspectral image classification with transformers

Overview

Spectralformer: Rethinking hyperspectral image classification with transformers

Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot


The code in this toolbox implements the "Spectralformer: Rethinking hyperspectral image classification with transformers". More specifically, it is detailed as follow.

alt text

Citation

Please kindly cite the papers if this code is useful and helpful for your research.

Danfeng Hong, Zhu Han, Jing Yao, Lianru Gao, Bing Zhang, Antonio Plaza, Jocelyn Chanussot. Spectralformer: Rethinking hyperspectral image classification with transformers. arXiv preprint, arXiv:2107.02988, 2021.

@article{hong2021spectralformer,
  title={Spectralformer: Rethinking hyperspectral image classification with transformers},
  author={Hong, Danfeng and Han, Zhu and Yao, Jing and Gao, Lianru and Zhang, Bing and Plaza, Antonio and Chanussot, Jocelyn},
  journal={arXiv preprint arXiv:2107.02988},
  year={2021}
}

System-specific notes

The data were generated by Matlab R2016a or higher versions, and the codes of networks were tested using PyTorch 1.6 version (CUDA 10.1) in Python 3.7 on Ubuntu system.

How to use it?

This toolbox consists of two proposed modules, i.e., group-wise spectral embedding (GSE: by setting band_patches larger than 1) and cross-layer adaptive fusion (CAF: by setting mode to CAF), that can be plug-and-played into both pixel-wise and patch-wise hyperspectral image classification. For more details, please refer to the paper.

Here an example experiment is given by using Indian Pines hyperspectral data. Directly run demo.py functions with different network parameter settings to produce the results. Please note that due to the randomness of the parameter initialization, the experimental results might have slightly different from those reported in the paper.

You may need to manually download IndianPine.mat to your local in the folder under path Codes_SpectralFormer/data/, due to their too large file size, from the following links of google drive or baiduyun:

Google drive: https://drive.google.com/drive/folders/1nRphkwDZ74p-Al_O_X3feR24aRyEaJDY?usp=sharing

Baiduyun: https://pan.baidu.com/s/1rY9hj7Ku1Un4PPOjEFpEfQ (access code: 6dme)

If you want to run the code in your own data, you can accordingly change the input (e.g., data, labels) and tune the parameters.

If you encounter the bugs while using this code, please do not hesitate to contact us.

Licensing

Copyright (C) 2021 Danfeng Hong

This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3 of the License.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this program.

Contact Information:

Danfeng Hong: [email protected]
Danfeng Hong is with the Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France.

If emergency, you can also add my QQ: 345088114.

Owner
Danfeng Hong
Research Scientist, DLR, Germany / Adjunct Scientist, GiPSA-Lab, French / Machine and Deep Learning in Earth Vision
Danfeng Hong
Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks

LMMNN Using Random Effects to Account for High-Cardinality Categorical Features and Repeated Measures in Deep Neural Networks This is the working dire

Giora Simchoni 10 Nov 02, 2022
Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021]

Neural Material Official code repository for the paper: Generative Modelling of BRDF Textures from Flash Images [SIGGRAPH Asia, 2021] Henzler, Deschai

Philipp Henzler 80 Dec 20, 2022
Tensorflow implementation of "BEGAN: Boundary Equilibrium Generative Adversarial Networks"

BEGAN in Tensorflow Tensorflow implementation of BEGAN: Boundary Equilibrium Generative Adversarial Networks. Requirements Python 2.7 or 3.x Pillow tq

Taehoon Kim 922 Dec 21, 2022
Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Network Pruning That Matters: A Case Study on Retraining Variants (ICLR 2021)

Duong H. Le 18 Jun 13, 2022
DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs

DeepI2I: Enabling Deep Hierarchical Image-to-Image Translation by Transferring from GANs Abstract: Image-to-image translation has recently achieved re

yaxingwang 23 Apr 14, 2022
This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack".

Generative Dynamic Patch Attack This reposityory contains the PyTorch implementation of our paper "Generative Dynamic Patch Attack". Requirements PyTo

Xiang Li 8 Nov 17, 2022
DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time

DR-GAN: Automatic Radial Distortion Rectification Using Conditional GAN in Real-Time Introduction This is official implementation for DR-GAN (IEEE TCS

Kang Liao 18 Dec 23, 2022
Neural network graphs and training metrics for PyTorch, Tensorflow, and Keras.

HiddenLayer A lightweight library for neural network graphs and training metrics for PyTorch, Tensorflow, and Keras. HiddenLayer is simple, easy to ex

Waleed 1.7k Dec 31, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Some bravo or inspiring research works on the topic of curriculum learning.

Towards Scalable Unpaired Virtual Try-On via Patch-Routed Spatially-Adaptive GAN Official code for NeurIPS 2021 paper "Towards Scalable Unpaired Virtu

131 Jan 07, 2023
This is the official PyTorch implementation of the CVPR 2020 paper "TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting".

TransMoMo: Invariance-Driven Unsupervised Video Motion Retargeting Project Page | YouTube | Paper This is the official PyTorch implementation of the C

Zhuoqian Yang 330 Dec 11, 2022
Repo for the paper Extrapolating from a Single Image to a Thousand Classes using Distillation

Extrapolating from a Single Image to a Thousand Classes using Distillation by Yuki M. Asano* and Aaqib Saeed* (*Equal Contribution) Extrapolating from

Yuki M. Asano 16 Nov 04, 2022
An essential implementation of BYOL in PyTorch + PyTorch Lightning

Essential BYOL A simple and complete implementation of Bootstrap your own latent: A new approach to self-supervised Learning in PyTorch + PyTorch Ligh

Enrico Fini 48 Sep 27, 2022
Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras

Face Mask Detection Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect

Chandrika Deb 1.4k Jan 03, 2023
Code for Greedy Gradient Ensemble for Visual Question Answering (ICCV 2021, Oral)

Greedy Gradient Ensemble for De-biased VQA Code release for "Greedy Gradient Ensemble for Robust Visual Question Answering" (ICCV 2021, Oral). GGE can

21 Jun 29, 2022
Mmdet benchmark with python

mmdet_benchmark 本项目是为了研究 mmdet 推断性能瓶颈,并且对其进行优化。 配置与环境 机器配置 CPU:Intel(R) Core(TM) i9-10900K CPU @ 3.70GHz GPU:NVIDIA GeForce RTX 3080 10GB 内存:64G 硬盘:1T

杨培文 (Yang Peiwen) 24 May 21, 2022
Class activation maps for your PyTorch models (CAM, Grad-CAM, Grad-CAM++, Smooth Grad-CAM++, Score-CAM, SS-CAM, IS-CAM, XGrad-CAM, Layer-CAM)

TorchCAM: class activation explorer Simple way to leverage the class-specific activation of convolutional layers in PyTorch. Quick Tour Setting your C

F-G Fernandez 1.2k Dec 29, 2022
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures using receptive field analysis (RFA) and create graph visualizations of your architecture.

ReceptiveFieldAnalysisToolbox This is RFA-Toolbox, a simple and easy-to-use library that allows you to optimize your neural network architectures usin

84 Nov 23, 2022
Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

Implementation based on Paper - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling

HamasKhan 3 Jul 08, 2022