Pytorch implementation of Masked Auto-Encoder

Related tags

Deep LearningMAE-code
Overview

Masked Auto-Encoder (MAE)

Pytorch implementation of Masked Auto-Encoder:

Usage

  1. Clone to the local.
> git clone https://github.com/liujiyuan13/MAE-code.git MAE-code
  1. Install required packages.
> cd MAE-code
> pip install requirements.txt
  1. Prepare datasets.
  • For Cifar10, Cifar100 and STL, skip this step for it will be done automatically;
  • For ImageNet1K, download and unzip the train(val) set into ./data/ImageNet1K/train(val).
  1. Set parameters.
  • All parameters are kept in default_args() function of main_mae(eval).py file.
  1. Run the code.
> python main_mae.py	# train MAE encoder
> python main_eval.py	# evaluate MAE encoder
  1. Visualize the ouput.
> tensorboard --logdir=./log --port 8888

Detail

Project structure

...
+ ckpt				# checkpoint
+ data 				# data folder
+ img 				# store images for README.md
+ log 				# log files
.gitignore 			
lars.py 			# LARS optimizer
main_eval.py 			# main file for evaluation
main_mae.py  			# main file for MAE training
model.py 			# model definitions of MAE and EvalNet
README.md 
util.py 			# helper functions
vit.py 				# definition of vision transformer

Encoder setting

In the paper, ViT-Base, ViT-Large and ViT-Huge are used. You can switch between them by simply changing the parameters in default_args(). Details can be found here and are listed in following table.

Name Layer Num. Hidden Size MLP Size Head Num.
Arg vit_depth vit_dim vit_mlp_dim vit_heads
ViT-B 12 768 3072 12
ViT-L 24 1024 4096 16
ViT-H 32 1280 5120 16

Evaluation setting

I implement four network training strategies concerned in the paper, including

  • pre-training is used to train MAE encoder and done in main_mae.py.
  • linear probing is used to evaluate MAE encoder. During training, MAE encoder is fixed.
    • args.n_partial = 0
  • partial fine-tuning is used to evaluate MAE encoder. During training, MAE encoder is partially fixed.
    • args.n_partial = 0.5 --> fine-tuning MLP sub-block with the transformer fixed
    • 1<=args.n_partial<=args.vit_depth-1 --> fine-tuning MLP sub-block and last layers of transformer
  • end-to-end fine-tuning is used to evaluate MAE encoder. During training, MAE encoder is fully trainable.
    • args.n_partial = args.vit_depth

Note that the last three strategies are done in main_eval.py where parameter args.n_partial is located.

At the same time, I follow the parameter settings in the paper appendix. Note that partial fine-tuning and end-to-end fine-tuning use the same setting. Nevertheless, I replace RandAug(9, 0.5) with RandomResizedCrop and leave mixup, cutmix and drop path techniques in further implementation.

Result

The experiment reproduce will takes a long time and I am unfortunately busy these days. If you get some results and are willing to contribute, please reach me via email. Thanks!

By the way, I have run the code from start to end. It works! So don't worry about the implementation errors. If you find any, please raise issues or email me.

Licence

This repository is under GPL V3.

About

Thanks project vit-pytorch, pytorch-lars and DeepLearningExamples for their codes contribute to this repository a lot!

Homepage: https://liujiyuan13.github.io

Email: [email protected]

Owner
Jiyuan
Jiyuan
data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer"

C2F-FWN data/code repository of "C2F-FWN: Coarse-to-Fine Flow Warping Network for Spatial-Temporal Consistent Motion Transfer" (https://arxiv.org/abs/

EKILI 46 Dec 14, 2022
Llvlir - Low Level Variable Length Intermediate Representation

Low Level Variable Length Intermediate Representation Low Level Variable Length

Michael Clark 2 Jan 24, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation [arxiv] This is the official repository for CDTrans: Cross-domain Transformer for

238 Dec 22, 2022
Sdf sparse conv - Deep Learning on SDF for Classifying Brain Biomarkers

Deep Learning on SDF for Classifying Brain Biomarkers To reproduce the results f

1 Jan 25, 2022
Codebase for Attentive Neural Hawkes Process (A-NHP) and Attentive Neural Datalog Through Time (A-NDTT)

Introduction Codebase for the paper Transformer Embeddings of Irregularly Spaced Events and Their Participants. This codebase contains two packages: a

Alan Yang 28 Dec 12, 2022
EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness

EqGAN - Improving GAN Equilibrium by Raising Spatial Awareness Improving GAN Equilibrium by Raising Spatial Awareness Jianyuan Wang, Ceyuan Yang, Ying

GenForce: May Generative Force Be with You 149 Dec 19, 2022
DaReCzech is a dataset for text relevance ranking in Czech

Dataset DaReCzech is a dataset for text relevance ranking in Czech. The dataset consists of more than 1.6M annotated query-documents pairs,

Seznam.cz a.s. 8 Jul 26, 2022
Image-to-image regression with uncertainty quantification in PyTorch

Image-to-image regression with uncertainty quantification in PyTorch. Take any dataset and train a model to regress images to images with rigorous, distribution-free uncertainty quantification.

Anastasios Angelopoulos 25 Dec 26, 2022
Generative Exploration and Exploitation - This is an improved version of GENE.

GENE This is an improved version of GENE. In the original version, the states are generated from the decoder of VAE. We have to check whether the gere

33 Mar 23, 2022
An Open-Source Tool for Automatic Disease Diagnosis..

OpenMedicalChatbox An Open-Source Package for Automatic Disease Diagnosis. Overview Due to the lack of open source for existing RL-base automated diag

8 Nov 08, 2022
TensorFlow implementation of original paper : https://github.com/hszhao/PSPNet

Keras implementation of PSPNet(caffe) Implemented Architecture of Pyramid Scene Parsing Network in Keras. For the best compability please use Python3.

VladKry 386 Dec 29, 2022
This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Convolutional Networks on Node Classification

DropEdge: Towards Deep Graph Convolutional Networks on Node Classification This is a Pytorch implementation of paper: DropEdge: Towards Deep Graph Con

401 Dec 16, 2022
Occlusion robust 3D face reconstruction model in CFR-GAN (WACV 2022)

Occlusion Robust 3D face Reconstruction Yeong-Joon Ju, Gun-Hee Lee, Jung-Ho Hong, and Seong-Whan Lee Code for Occlusion Robust 3D Face Reconstruction

Yeongjoon 31 Dec 19, 2022
Synthetic Scene Text from 3D Engines

Introduction UnrealText is a project that synthesizes scene text images using 3D graphics engine. This repository accompanies our paper: UnrealText: S

Shangbang Long 215 Dec 29, 2022
The AWS Certified SysOps Administrator

The AWS Certified SysOps Administrator – Associate (SOA-C02) exam is intended for system administrators in a cloud operations role who have at least 1 year of hands-on experience with deployment, man

Aiden Pearce 32 Dec 11, 2022
Official repository for: Continuous Control With Ensemble DeepDeterministic Policy Gradients

Continuous Control With Ensemble Deep Deterministic Policy Gradients This repository is the official implementation of Continuous Control With Ensembl

4 Dec 06, 2021
Notspot robot simulation - Python version

Notspot robot simulation - Python version This repository contains all the files and code needed to simulate the notspot quadrupedal robot using Gazeb

50 Sep 26, 2022
This package implements the algorithms introduced in Smucler, Sapienza, and Rotnitzky (2020) to compute optimal adjustment sets in causal graphical models.

optimaladj: A library for computing optimal adjustment sets in causal graphical models This package implements the algorithms introduced in Smucler, S

Facundo Sapienza 6 Aug 04, 2022
PyTorch implementation for paper StARformer: Transformer with State-Action-Reward Representations.

StARformer This repository contains the PyTorch implementation for our paper titled StARformer: Transformer with State-Action-Reward Representations.

Jinghuan Shang 14 Dec 09, 2022
(CVPR 2022) Energy-based Latent Aligner for Incremental Learning

Energy-based Latent Aligner for Incremental Learning Accepted to CVPR 2022 We illustrate an Incremental Learning model trained on a continuum of tasks

Joseph K J 37 Jan 03, 2023