Open solution to the Toxic Comment Classification Challenge

Overview

Starter code: Kaggle Toxic Comment Classification Challenge

More competitions 🎇

Check collection of public projects 🎁 , where you can find multiple Kaggle competitions with code, experiments and outputs.

Here, at Neptune we enjoy participating in the Kaggle competitions. Toxic Comment Classification Challenge is especially interesting because it touches important issue of online harassment.

Ensemble our predictions in the cloud!

You need to be registered to neptune.ml to be able to use our predictions for your ensemble models.

  • click start notebook
  • choose browse button
  • select the neptune_ensembling.ipynb file from this repository.
  • choose worker type: gcp-large is the recommended one.
  • run first few cells to load our predictions on the held out validation set along with the labels
  • grid search over many possible parameter options. The more runs you choose the longer it will run.
  • train your second level, ensemble model (it should take less than an hour once you have the parameters)
  • load our predictions on the test set
  • feed our test set predictions to your ensemble model and get final predictions
  • save your submission file
  • click on browse files and find your submission file to download it.

Running the notebook as is got 0.986+ on the LB.

Disclaimer

In this open source solution you will find references to the neptune.ml. It is free platform for community Users, which we use daily to keep track of our experiments. Please note that using neptune.ml is not necessary to proceed with this solution. You may run it as plain Python script 😉 .

The idea

We are contributing starter code that is easy to use and extend. We did it before with Cdiscount’s Image Classification Challenge and we believe that it is correct way to open data science to the wider community and encourage more people to participate in Challenges. This starter is ready-to-use end-to-end solution. Since all computations are organized in separate steps, it is also easy to extend. Check devbook.ipynb for more information about different pipelines.

Now we want to go one step further and invite you to participate in the development of this analysis pipeline. At the later stage of the competition (early February) we will invite top contributors to join our team on Kaggle.

Contributing

You are welcome to extend this pipeline and contribute your own models or procedures. Please refer to the CONTRIBUTING for more details.

Installation

option 1: Neptune cloud

on the neptune site

  • log in: neptune accound login
  • create new project named toxic: Follow the link Projects (top bar, left side), then click New project button. This action will generate project-key TOX, which is already listed in the neptune.yaml.

run setup commands

$ git clone https://github.com/neptune-ml/kaggle-toxic-starter.git
$ pip3 install neptune-cli
$ neptune login

start experiment

$ neptune send --environment keras-2.0-gpu-py3 --worker gcp-gpu-medium --config best_configs/fasttext_gru.yaml -- train_evaluate_predict_cv_pipeline --pipeline_name fasttext_gru --model_level first

This should get you to 0.9852 Happy Training :)

Refer to Neptune documentation and Getting started: Neptune Cloud for more.

option 2: local install

Please refer to the Getting started: local instance for installation procedure.

Solution visualization

Below end-to-end pipeline is visualized. You can run exactly this one! pipeline_001

We have also prepared something simpler to just get you started:

pipeline_002

User support

There are several ways to seek help:

  1. Read project's Wiki, where we publish descriptions about the code, pipelines and neptune.
  2. Kaggle discussion is our primary way of communication.
  3. You can submit an issue directly in this repo.
Baseline code for Korean open domain question answering(ODQA)

Open-Domain Question Answering(ODQA)는 다양한 주제에 대한 문서 집합으로부터 자연어 질의에 대한 답변을 찾아오는 task입니다. 이때 사용자 질의에 답변하기 위해 주어지는 지문이 따로 존재하지 않습니다. 따라서 사전에 구축되어있는 Knowl

VUMBLEB 69 Nov 04, 2022
WikiPron - a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary

WikiPron WikiPron is a command-line tool and Python API for mining multilingual pronunciation data from Wiktionary, as well as a database of pronuncia

213 Jan 01, 2023
Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT)

CIRPLANT This repository contains the code and pre-trained models for Composed Image Retrieval using Pretrained LANguage Transformers (CIRPLANT) For d

Zheyuan (David) Liu 29 Nov 17, 2022
PyTorch implementation of NATSpeech: A Non-Autoregressive Text-to-Speech Framework

A Non-Autoregressive Text-to-Speech (NAR-TTS) framework, including official PyTorch implementation of PortaSpeech (NeurIPS 2021) and DiffSpeech (AAAI 2022)

760 Jan 03, 2023
PyTorch source code of NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models"

This repository contains source code for NAACL 2019 paper "An Embarrassingly Simple Approach for Transfer Learning from Pretrained Language Models" (P

Alexandra Chronopoulou 89 Aug 12, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
BARTpho: Pre-trained Sequence-to-Sequence Models for Vietnamese

Table of contents Introduction Using BARTpho with fairseq Using BARTpho with transformers Notes BARTpho: Pre-trained Sequence-to-Sequence Models for V

VinAI Research 58 Dec 23, 2022
NLP project that works with news (NER, context generation, news trend analytics)

СоАвтор СоАвтор – платформа и открытый набор инструментов для редакций и журналистов-фрилансеров, который призван сделать процесс создания контента ма

38 Jan 04, 2023
Need: Image Search With Python

Need: Image Search The problem is that a user needs to search for a specific ima

Surya Komandooru 1 Dec 30, 2021
Python package for performing Entity and Text Matching using Deep Learning.

DeepMatcher DeepMatcher is a Python package for performing entity and text matching using deep learning. It provides built-in neural networks and util

461 Dec 28, 2022
The code for two papers: Feedback Transformer and Expire-Span.

transformer-sequential This repo contains the code for two papers: Feedback Transformer Expire-Span The training code is structured for long sequentia

Meta Research 125 Dec 25, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
Searching keywords in PDF file folders

keyword_searching Steps to use this Python scripts: (1)Paste this script into the file folder containing the PDF files you need to search from; (2)Thi

1 Nov 08, 2021
multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

multi-label,classifier,text classification,多标签文本分类,文本分类,BERT,ALBERT,multi-label-classification,seq2seq,attention,beam search

hellonlp 30 Dec 12, 2022
Reproduction process of BERT on SST2 dataset

BERT-SST2-Prod Reproduction process of BERT on SST2 dataset 安装说明 下载代码库 git clone https://github.com/JunnYu/BERT-SST2-Prod 进入文件夹,安装requirements pip ins

yujun 1 Nov 18, 2021
Toward Model Interpretability in Medical NLP

Toward Model Interpretability in Medical NLP LING380: Topics in Computational Linguistics Final Project James Cross ( 1 Mar 04, 2022

Analyse japanese ebooks using MeCab to determine the difficulty level for japanese learners

japanese-ebook-analysis This aim of this project is to make analysing the contents of a japanese ebook easy and streamline the process for non-technic

Christoffer Aakre 14 Jul 23, 2022
Python functions for summarizing and improving voice dictation input.

Helpmespeak Help me speak uses Python functions for summarizing and improving voice dictation input. Get started with OpenAI gpt-3 OpenAI is a amazing

Margarita Humanitarian Foundation 6 Dec 17, 2022
pkuseg多领域中文分词工具; The pkuseg toolkit for multi-domain Chinese word segmentation

pkuseg:一个多领域中文分词工具包 (English Version) pkuseg 是基于论文[Luo et. al, 2019]的工具包。其简单易用,支持细分领域分词,有效提升了分词准确度。 目录 主要亮点 编译和安装 各类分词工具包的性能对比 使用方式 论文引用 作者 常见问题及解答 主要

LancoPKU 6k Dec 29, 2022
The official implementation of "BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Identify Analogies?, ACL 2021 main conference"

BERT is to NLP what AlexNet is to CV This is the official implementation of BERT is to NLP what AlexNet is to CV: Can Pre-Trained Language Models Iden

Asahi Ushio 20 Nov 03, 2022