Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

Overview

Vehicles Counting using YOLOv4 + DeepSORT + Flask + Ngrok

🚙 🛵 🚛 🚌

A project for counting vehicles using YOLOv4 for training, DeepSORT for tracking, Flask for deploying to web (watch result purpose only) and Ngrok for public IP address

References

I want to give my big thanks to all of these authors' repo:

Getting Started

This project has 3 main parts:

  1. Preparing data
  2. Training model using the power of YOLOv4
  3. Implementing DeepSORT algorithm for counting vehicles

Preparing data

Preparing data notebook

I splitted my data into 2 scenes: daytime and nighttime, and training 8 classes (4 classes each scene, which are motorbike, car, bus, truck).

Prepare your own data or you can download my cleaned data with annotations:

If you prepare your own data, remember your annotation files fit this format:

  1. Every image has its own annotation file (.txt)
  2. Each file contains a list of objects' bounding box (read this for more details):

   
    
    
     
     
      
      
       
       
       
         ... 
       
      
      
     
     
    
    
   
   

Training model using YOLOv4

Training model notebook

Training model on your local computer is really complicated in environment installation and slow if you don't have a powerful GPU. In this case, I used Google Colab.

Read more: Testing your trained model on local machine with OpenCV

Implementing DeepSORT algorithm for counting vehicles

Implementing DeepSORT notebook

First, setting up environment on your machine:

Conda (Recommended)

# Tensorflow CPU
conda env create -f conda-cpu.yml
conda activate yolov4-cpu

# Tensorflow GPU
conda env create -f conda-gpu.yml
conda activate yolov4-gpu

Pip

(TensorFlow 2 packages require a pip version > 19.0.)

# TensorFlow CPU
pip install -r requirements.txt

# TensorFlow GPU
pip install -r requirements-gpu.txt

# Google Colab
!pip install -r requirements-colab.txt

Convert YOLOv4 model to Tensorflow Keras

Copy your trained model in previous part to this project and run save_model.py in cmd:

  • --weights: Path to .weights file (your trained model)
  • --output: Path to converted model.
  • --model: Model version (yolov4 in this case)
python save_model.py --weights ./yolov4_final.weights --output ./checkpoints/yolov4-416 --model yolov4

Download my .weights model if you want: GGDrive mirror

Counting now!

Import VehiclesCounting class in object_tracker.py file and using run() to start running:

# Import this main file
from object_tracker import VehiclesCounting
# Initialize
vc = VehiclesCounting(cam_name,
framework='tf', 
weights='./checkpoints/yolov4-416', 
size=416, 
tiny=False, 
model='yolov4', 
video='./data/video/test.mp4', 
output=None, 
output_format='XVID', 
iou=0.45, 
score=0.5, 
dont_show=False, 
info=False, 
count=False,
detect_line_position=0.5
detect_line_angle=0)
  • cam_name: input your camera name
  • framework: choose your model framework (tf, tflite, trt)
  • weights: path to your .weights
  • size: resize images to
  • tiny: (yolo,yolo-tiny)
  • model: (yolov3,yolov4)
  • video: path to your video or set 0 for webcam or youtube url
  • output: path to your results
  • output_format: codec used in VideoWriter when saving video to file
  • iou: iou threshold
  • score: score threshold
  • dont_show: dont show video output
  • info: show detailed info of tracked objects
  • count: count objects being tracked on screen
  • detect_line_position: (0..1) of height of video frame.
  • detect_line_angle: (0..180) degrees of detect line.
# Run it
vc.run()

Contact me

Owner
Duong Tran Thanh
I love learning AI and mobile development
Duong Tran Thanh
Implementation of the bachelor's thesis "Real-time stock predictions with deep learning and news scraping".

Real-time stock predictions with deep learning and news scraping This repository contains a partial implementation of my bachelor's thesis "Real-time

David Álvarez de la Torre 0 Feb 09, 2022
Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation

DynaBOA Code repositoty for the paper: Out-of-Domain Human Mesh Reconstruction via Dynamic Bilevel Online Adaptation Shanyan Guan, Jingwei Xu, Michell

198 Dec 29, 2022
This is a simple backtesting framework to help you test your crypto currency trading. It includes a way to download and store historical crypto data and to execute a trading strategy.

You can use this simple crypto backtesting script to ensure your trading strategy is successful Minimal setup required and works well with static TP a

Andrei 154 Sep 12, 2022
BARTScore: Evaluating Generated Text as Text Generation

This is the Repo for the paper: BARTScore: Evaluating Generated Text as Text Generation Updates 2021.06.28 Release online evaluation Demo 2021.06.25 R

NeuLab 196 Dec 17, 2022
An Straight Dilated Network with Wavelet for image Deblurring

SDWNet: A Straight Dilated Network with Wavelet Transformation for Image Deblurring(offical) 1. Introduction This repo is not only used for our paper(

FlyEgle 41 Jan 04, 2023
Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems

Learning an Adaptive Meta Model-Generator for Incrementally Updating Recommender Systems This is our experimental code for RecSys 2021 paper "Learning

11 Jul 28, 2022
Exploring Relational Context for Multi-Task Dense Prediction [ICCV 2021]

Adaptive Task-Relational Context (ATRC) This repository provides source code for the ICCV 2021 paper Exploring Relational Context for Multi-Task Dense

David Brüggemann 35 Dec 05, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
This repository contains the code used for the implementation of the paper "Probabilistic Regression with HuberDistributions"

Public_prob_regression_with_huber_distributions This repository contains the code used for the implementation of the paper "Probabilistic Regression w

David Mohlin 1 Dec 04, 2021
A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery

PiSL A python implementation of Physics-informed Spline Learning for nonlinear dynamics discovery. Sun, F., Liu, Y. and Sun, H., 2021. Physics-informe

Fangzheng (Andy) Sun 8 Jul 13, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
An intuitive library to extract features from time series

Time Series Feature Extraction Library Intuitive time series feature extraction This repository hosts the TSFEL - Time Series Feature Extraction Libra

Associação Fraunhofer Portugal Research 589 Jan 04, 2023
ML-based medical imaging using Azure

Disclaimer This code is provided for research and development use only. This code is not intended for use in clinical decision-making or for any other

Microsoft Azure 68 Dec 23, 2022
Automatic Image Background Subtraction

Automatic Image Background Subtraction This repo contains set of scripts for automatic one-shot image background subtraction task using the following

Oleg Sémery 6 Dec 05, 2022
Jarvis Project is a basic virtual assistant that uses TensorFlow for learning.

Jarvis_proyect Jarvis Project is a basic virtual assistant that uses TensorFlow for learning. Latest version 0.1 Features: Good morning protocol Tell

Anze Kovac 3 Aug 31, 2022
Ground truth data for the Optical Character Recognition of Historical Classical Commentaries.

OCR Ground Truth for Historical Commentaries The dataset OCR ground truth for historical commentaries (GT4HistComment) was created from the public dom

Ajax Multi-Commentary 3 Sep 08, 2022
When BERT Plays the Lottery, All Tickets Are Winning

When BERT Plays the Lottery, All Tickets Are Winning Large Transformer-based models were shown to be reducible to a smaller number of self-attention h

Sai 16 Nov 10, 2022
MLP-Like Vision Permutator for Visual Recognition (PyTorch)

Vision Permutator: A Permutable MLP-Like Architecture for Visual Recognition (arxiv) This is a Pytorch implementation of our paper. We present Vision

Qibin (Andrew) Hou 162 Nov 28, 2022
A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualization

Website, Tutorials, and Docs    Uncertainty Toolbox A python toolbox for predictive uncertainty quantification, calibration, metrics, and visualizatio

Uncertainty Toolbox 1.4k Dec 28, 2022
Prediction of MBA refinance Index (Mortgage prepayment)

Prediction of MBA refinance Index (Mortgage prepayment) Deep Neural Network based Model The ability to predict mortgage prepayment is of critical use

Ruchil Barya 1 Jan 16, 2022