Implementation of the famous Image Manipulation\Forgery Detector "ManTraNet" in Pytorch

Overview

Generic badge Ask Me Anything ! visitors

Who has never met a forged picture on the web ? No one ! Everyday we are constantly facing fake pictures touched up in Photoshop but it is not always easy to detect it.

In this repo, you will find an implementation of ManTraNet, a manipulation tracing network for detection and localization of image forgeries with anomalous features. With this algorithm, you may find if an image has been falsified and even identify suspicious regions. A little example is displayed below.

It's a faifthful replica of the official implementation using however the library Pytorch. To learn more about this network, I suggest you to read the paper that describes it here.

On top of the MantraNet, there is also a file containing pre-trained weights obtained by the authors which is compatible with this pytorch version.

There is a slight discrepancy between the architecture depicted in the paper compared to the real one implemented and shared on the official repo. I put below the real architecture which is implemented here.

Please note that the rest of the README is largely inspired by the original repo.


What is ManTraNet ?

ManTraNet is an end-to-end image forgery detection and localization solution, which means it takes a testing image as input, and predicts pixel-level forgery likelihood map as output. Comparing to existing methods, the proposed ManTraNet has the following advantages:

  • Simplicity: ManTraNet needs no extra pre- and/or post-processing
  • Fast: ManTraNet puts all computations in a single network, and accepts an image of arbitrary size.
  • Robustness: ManTraNet does not rely on working assumptions other than the local manipulation assumption, i.e. some region in a testing image is modified differently from the rest.

Technically speaking, ManTraNet is composed of two sub-networks as shown below:

  • The Image Manipulation Trace Feature Extractor: It's a feature extraction network for the image manipulation classification task, which is sensitive to different manipulation types, and encodes the image manipulation in a patch into a fixed dimension feature vector.

  • The Local Anomaly Detection Network: It's a network that is designed following the intuition that we need to inspect more and more locally our extracted features if we want to be able to detect many kind of forgeries efficiently.

Where are the pre-trained weights coming from ?

  • The authors have first pretrained the Image Manipulation Trace Feature Extractor with an homemade database containing 385 types of forgeries. Unfortunately, their database is not shared publicly. Then, they trained the Anomaly Detector with four types of synthetic data, i.e. copy-move, splicing, removal, and enhancement.

Mantranet results from the composition of these two networks

The pre-trained weights available in this repo are the results of these two trainings achieved by the authors

Remarks : To train ManTraNet you need your own (relevant) datasets.

Dependency

  • Pytorch >= 1.8.1

Demo

One may simply download the repo and play with the provided ipython notebook.

N.B. :

  • Considering that there is some differences between the implementation of common functions between Tensorflow/Keras and Pytorch, some particular methods of Pytorch (like batch normalization or hardsigmoid) are re-implemented here to match perfectly with the original Tensorflow version

  • MantraNet is an architecture difficult to train without GPU/Multi-CPU. Even in "eval" mode, if you want to use it for detecting forgeries in one image it may take some minutes using only your CPU. It depends on the size of your input image.

  • There is also a slightly different version of MantraNet that uses ConvGRU instead of ConvLSTM in the repo. It enables to speed up a bit the training of the MantraNet without losing efficiency.

Citation :

@InProceedings{Wu_2019_CVPR,
author = {Wu, Yue and AbdAlmageed, Wael and Natarajan, Premkumar},
title = {ManTra-Net: Manipulation Tracing Network for Detection and Localization of Image Forgeries With Anomalous Features},
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
Owner
Rony Abecidan
PhD Candidate @ Centrale Lille
Rony Abecidan
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
A library for optimization on Riemannian manifolds

TensorFlow RiemOpt A library for manifold-constrained optimization in TensorFlow. Installation To install the latest development version from GitHub:

Oleg Smirnov 83 Dec 27, 2022
Code of TIP2021 Paper《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet and Pytorch versions.

SFace Code of TIP2021 Paper 《SFace: Sigmoid-Constrained Hypersphere Loss for Robust Face Recognition》. We provide both MxNet, PyTorch and Jittor versi

Zhong Yaoyao 47 Nov 25, 2022
The source code of "SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation", accepted to WACV 2022.

SIDE: Center-based Stereo 3D Detector with Structure-aware Instance Depth Estimation The source code of our work "SIDE: Center-based Stereo 3D Detecto

10 Dec 18, 2022
The Submission for SIMMC 2.0 Challenge 2021

The Submission for SIMMC 2.0 Challenge 2021 challenge website Requirements python 3.8.8 pytorch 1.8.1 transformers 4.8.2 apex for multi-gpu nltk Prepr

5 Jul 26, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
improvement of CLIP features over the traditional resnet features on the visual question answering, image captioning, navigation and visual entailment tasks.

CLIP-ViL In our paper "How Much Can CLIP Benefit Vision-and-Language Tasks?", we show the improvement of CLIP features over the traditional resnet fea

310 Dec 28, 2022
Deep Learning applied to Integral data analysis

DeepIntegralCompton Deep Learning applied to Integral data analysis Module installation Move to the root directory of the project and execute : pip in

Thomas Vuillaume 1 Dec 10, 2021
ProjectOxford-ClientSDK - This repo has moved :house: Visit our website for the latest SDKs & Samples

This project has moved 🏠 We heard your feedback! This repo has been deprecated and each project has moved to a new home in a repo scoped by API and p

Microsoft 970 Nov 28, 2022
A PyTorch-based library for semi-supervised learning

News If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]<

1k Jan 06, 2023
PyAF is an Open Source Python library for Automatic Time Series Forecasting built on top of popular pydata modules.

PyAF (Python Automatic Forecasting) PyAF is an Open Source Python library for Automatic Forecasting built on top of popular data science python module

CARME Antoine 405 Jan 02, 2023
Weakly-supervised semantic image segmentation with CNNs using point supervision

Code for our ECCV paper What's the Point: Semantic Segmentation with Point Supervision. Summary This library is a custom build of Caffe for semantic i

27 Sep 14, 2022
Implementation of "Fast and Flexible Temporal Point Processes with Triangular Maps" (Oral @ NeurIPS 2020)

Fast and Flexible Temporal Point Processes with Triangular Maps This repository includes a reference implementation of the algorithms described in "Fa

Oleksandr Shchur 20 Dec 02, 2022
Embracing Single Stride 3D Object Detector with Sparse Transformer

SST: Single-stride Sparse Transformer This is the official implementation of paper: Embracing Single Stride 3D Object Detector with Sparse Transformer

TuSimple 385 Dec 28, 2022
Code repository for Semantic Terrain Classification for Off-Road Autonomous Driving

BEVNet Datasets Datasets should be put inside data/. For example, data/semantic_kitti_4class_100x100. Training BEVNet-S Example: cd experiments bash t

(Brian) JoonHo Lee 24 Dec 12, 2022
TreeSubstitutionCipher - Encryption system based on trees and substitution

Tree Substitution Cipher Generation Algorithm: Generate random tree. Tree nodes

stepa 1 Jan 08, 2022
This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state.

This script scrapes and stores the availability of timeslots for Car Driving Test at all RTA Serivce NSW centres in the state. Dependencies Account wi

Balamurugan Soundararaj 21 Dec 14, 2022
The codebase for Data-driven general-purpose voice activity detection.

Data driven GPVAD Repository for the work in TASLP 2021 Voice activity detection in the wild: A data-driven approach using teacher-student training. S

Heinrich Dinkel 75 Nov 27, 2022
Orthogonal Over-Parameterized Training

The inductive bias of a neural network is largely determined by the architecture and the training algorithm. To achieve good generalization, how to effectively train a neural network is of great impo

Weiyang Liu 11 Apr 18, 2022
Code for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"

Triple-cooperative Video Shadow Detection Code and dataset for the CVPR 2021 paper "Triple-cooperative Video Shadow Detection"[arXiv link] [official l

Zhihao Chen 24 Oct 04, 2022