LeafSnap replicated using deep neural networks to test accuracy compared to traditional computer vision methods.

Overview

Deep-Leafsnap

Convolutional Neural Networks have become largely popular in image tasks such as image classification recently largely due to to Krizhevsky, et al. in their famous paper ImageNet Classification with Deep Convolutional Neural Networks. Famous models such as AlexNet, VGG-16, ResNet-50, etc. have scored state of the art results on image classfication datasets such as ImageNet and CIFAR-10.

We present an application of CNN's to the task of classifying trees by images of their leaves; specifically all 185 types of trees in the United States. This task proves to be difficult for traditional computer vision methods due to the high number of classes, inconsistency in images, and large visual similarity between leaves.

Kumar, et al. developed a automatic visual recognition algorithm in their 2012 paper Leafsnap: A Computer Vision System for Automatic Plant Species Identification to attempt to solve this problem.

Our model is based off VGG-16 except modified to work with 64x64 size inputs. We achieved state of the art results at the time. Our deep learning approach to this problem further improves the accuracy from 70.8% to 86.2% for the top-1 prediction accuracy and from 96.8% to 98.4% for top-5 prediction accuracy.

Top-1 Accuracy Top-5 Accuracy
Leafsnap 70.8% 96.8%
Deep-Leafsnap 86.2% 98.4%

We noticed that our model failed to recognize specific classes of trees constantly causing our overall accuracy to derease. This is primarily due to the fact that those trees had very small leaves which were hard to preprocess and crop. Our training images were also resized to 64x64 due to limited computational resources. We plan on further improving our data preprocessing and increasing our image size to 224x224 in order to exceed 90% for our top-1 prediction acurracy.

The following goes over the code and how to set it up on your own machine.

Files

  • model.py trains a convolutional neural network on the dataset.
  • vgg.py PyTorch model code for VGG-16.
  • densenet.py PyTorch model code for DenseNet-121.
  • resnet.py PyTorch model code for ResNet.
  • dataset.py creates a new train/test dataset by cropping the leaf and augmenting the data.
  • utils.py helps do some of the hardcore image processing in dataset.py.
  • averagemeter.py helper class which keeps track of a bunch of averages when training.
  • leafsnap-dataset-images.csv is the CSV file corresponding to the dataset.
  • requirements.txt contains the pip requirements to run the code.

Installation

To run the models and code make sure you Python installed.

Install PyTorch by following the directions here.

Clone the repo onto your local machine and cd into the directory.

git clone https://github.com/sujithv28/Deep-Leafsnap.git
cd Deep-Leafsnap

Install all the python dependencies:

pip install -r requirements.txt

Make sure sklearn is updated to the latest version.

pip install --upgrade sklearn

Also make sure you have OpenCV installed either through pip or homebrew. You can check if this works by running and making sure nothing complains:

python
import cv2

Download Leafsnap's image data and extract it to the main directory by running in the directory. Original data can be found here.

wget https://www.dropbox.com/s/dp3sk8wpiu9yszg/data.zip?dl=0
unzip -a data.zip?dl=0
rm data.zip?dl=0

Create the Training and Testing Data

To create the dataset, run

python dataset.py

This cleans the dataset by cropping only neccesary portions of the images containing the leaves and also resizes them to 64x64. If you want to change the image size go to utils.py and change img = misc.imresize(img, (64,64))to any size you want.

Training Model

To train the model, run

python model.py
Owner
Sujith Vishwajith
Computer Science & Math @ University of Maryland
Sujith Vishwajith
Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Meta-SparseINR Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, N

Jaeho Lee 41 Nov 10, 2022
The official implementation code of "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction."

PlantStereo This is the official implementation code for the paper "PlantStereo: A Stereo Matching Benchmark for Plant Surface Dense Reconstruction".

Wang Qingyu 14 Nov 28, 2022
Best practices for segmentation of the corporate network of any company

Best-practice-for-network-segmentation What is this? This project was created to publish the best practices for segmentation of the corporate network

2k Jan 07, 2023
An improvement of FasterGICP: Acceptance-rejection Sampling based 3D Lidar Odometry

fasterGICP This package is an improvement of fast_gicp Please cite our paper if possible. W. Jikai, M. Xu, F. Farzin, D. Dai and Z. Chen, "FasterGICP:

79 Dec 31, 2022
🐦 Quickly annotate data from the comfort of your Jupyter notebook

🐦 pigeon - Quickly annotate data on Jupyter Pigeon is a simple widget that lets you quickly annotate a dataset of unlabeled examples from the comfort

Anastasis Germanidis 647 Jan 05, 2023
Official PyTorch code for Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021)

Hierarchical Conditional Flow: A Unified Framework for Image Super-Resolution and Image Rescaling (HCFlow, ICCV2021) This repository is the official P

Jingyun Liang 159 Dec 30, 2022
Yolo object detection - Yolo object detection with python

How to run download required files make build_image make download Docker versio

3 Jan 26, 2022
This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks

NNProject - DeepMask This is a Keras-based Python implementation of DeepMask- a complex deep neural network for learning object segmentation masks. Th

189 Nov 16, 2022
Keras-tensorflow implementation of Fully Convolutional Networks for Semantic Segmentation(Unfinished)

Keras-FCN Fully convolutional networks and semantic segmentation with Keras. Models Models are found in models.py, and include ResNet and DenseNet bas

645 Dec 29, 2022
One-line your code easily but still with the fun of doing so!

One-liner-iser One-line your code easily but still with the fun of doing so! Have YOU ever wanted to write one-line Python code, but don't have the sa

5 May 04, 2022
Select, weight and analyze complex sample data

Sample Analytics In large-scale surveys, often complex random mechanisms are used to select samples. Estimates derived from such samples must reflect

samplics 37 Dec 15, 2022
Neuralnetwork - Basic Multilayer Perceptron Neural Network for deep learning

Neural Network Just a basic Neural Network module Usage Example Importing Module

andreecy 0 Nov 01, 2022
Stacs-ci - A set of modules to enable integration of STACS with commonly used CI / CD systems

Static Token And Credential Scanner CI Integrations What is it? STACS is a YARA

STACS 18 Aug 04, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
Easily benchmark PyTorch model FLOPs, latency, throughput, max allocated memory and energy consumption

⏱ pytorch-benchmark Easily benchmark model inference FLOPs, latency, throughput, max allocated memory and energy consumption Install pip install pytor

Lukas Hedegaard 21 Dec 22, 2022
[3DV 2021] Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation

Channel-Wise Attention-Based Network for Self-Supervised Monocular Depth Estimation This is the official implementation for the method described in Ch

Jiaxing Yan 27 Dec 30, 2022
Scikit-event-correlation - Event Correlation and Forecasting over High Dimensional Streaming Sensor Data algorithms

scikit-event-correlation Event Correlation and Changing Detection Algorithm Theo

Intellia ICT 5 Oct 30, 2022
Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch

Segformer - Pytorch Implementation of Segformer, Attention + MLP neural network for segmentation, in Pytorch. Install $ pip install segformer-pytorch

Phil Wang 208 Dec 25, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Code accompanying our NeurIPS 2021 traffic4cast challenge

Traffic forecasting on traffic movie snippets This repo contains all code to reproduce our approach to the IARAI Traffic4cast 2021 challenge. In the c

Nina Wiedemann 2 Aug 09, 2022