Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Overview

Meta-SparseINR

Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, Namhoon Lee, and Jinwoo Shin.

TL;DR: We develop a scalable method to learn sparse neural representations for a large set of signals.

Illustrations of (a) an implicit neural representation, (b) the standard pruning algorithm that prunes and retrains the model for each signal considered, and (c) the proposed Meta-SparseINR procedure to find a sparse initial INR, which can be trained further to fit each signal.

1. Requirements

conda create -n inrprune python=3.7
conda activate inrprune

conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

pip install torchmeta
pip install imageio einops tensorboardX

Datasets

  • Download Imagenette and SDF file from the following page:
  • One should locate the dataset into /data folder

2. Training

Training option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}

Meta-SparseINR (ours)

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (magnitude pruning)
python main.py --exp metaprune --epoch 30000 --pruner MP --amount 0.2 --data <DATASET>

Random Pruning

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (random pruning)
python main.py --exp metaprune --epoch 30000 --pruner RP --amount 0.2 --data <DATASET>

Dense-Narrow

# Train dense model with a given width

# Shell script style
widthlist="230 206 184 164 148 132 118 106 94 84 76 68 60 54 48 44 38 34 32 28"
for width in $widthlist
do
    python main.py --exp meta_baseline --epoch 150000 --data <DATASET> --width $width --id width_$width
done

3. Evaluation

Evaluation option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}
  • <OPT_TYPE>: {default,two_step_sgd}, default denotes adam optimizer with 100 steps.

We assume all checkpoints are trained.

Meta-SparseINR (ours)

python eval.py --exp prune --pruner MP --data <DATASET> --opt_type <OPT_TYPE>

Baselines

# Random pruning
python eval.py --exp prune --pruner RP --data <DATASET> --opt_type <OPT_TYPE>

# Dense-Narrow
python eval.py --exp dense_narrow --data <DATASET> --opt_type <OPT_TYPE>

# MAML + One-Shot
python eval.py --exp one_shot --data <DATASET> --opt_type default

# MAML + IMP
python eval.py --exp imp --data <DATASET> --opt_type default

# Scratch
python eval.py --exp scratch --data <DATASET> --opt_type <OPT_TYPE>

4. Experimental Results

Citation

@inproceedings{lee2021meta,
  title={Meta-learning Sparse Implicit Neural Representations},
  author={Jaeho Lee and Jihoon Tack and Namhoon Lee and Jinwoo Shin},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Reference

Owner
Jaeho Lee
Postdoctoral researcher at KAIST.
Jaeho Lee
PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices.

PyTorch-LIT PyTorch-LIT is the Lite Inference Toolkit (LIT) for PyTorch which focuses on easy and fast inference of large models on end-devices. With

Amin Rezaei 157 Dec 11, 2022
Extracts essential Mediapipe face landmarks and arranges them in a sequenced order.

simplified_mediapipe_face_landmarks Extracts essential Mediapipe face landmarks and arranges them in a sequenced order. The default 478 Mediapipe face

Irfan 13 Oct 04, 2022
COCO Style Dataset Generator GUI

A simple GUI-based COCO-style JSON Polygon masks' annotation tool to facilitate quick and efficient crowd-sourced generation of annotation masks and bounding boxes. Optionally, one could choose to us

Hans Krupakar 142 Dec 09, 2022
DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

DeepFaceLive - Live Deep Fake in python, Real-time face swap for PC streaming or video calls

8.3k Dec 31, 2022
Code for Fold2Seq paper from ICML 2021

[ICML2021] Fold2Seq: A Joint Sequence(1D)-Fold(3D) Embedding-based Generative Model for Protein Design Environment file: environment.yml Data and Feat

International Business Machines 43 Dec 04, 2022
Official implementation of the ICML2021 paper "Elastic Graph Neural Networks"

ElasticGNN This repository includes the official implementation of ElasticGNN in the paper "Elastic Graph Neural Networks" [ICML 2021]. Xiaorui Liu, W

liuxiaorui 34 Dec 04, 2022
Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings

Prompt-BERT: Prompt makes BERT Better at Sentence Embeddings Results on STS Tasks Model STS12 STS13 STS14 STS15 STS16 STSb SICK-R Avg. unsup-prompt-be

196 Jan 08, 2023
LightningFSL: Pytorch-Lightning implementations of Few-Shot Learning models.

LightningFSL: Few-Shot Learning with Pytorch-Lightning In this repo, a number of pytorch-lightning implementations of FSL algorithms are provided, inc

Xu Luo 76 Dec 11, 2022
[Link]deep_portfolo - Use Reforcemet earg ad Supervsed learg to Optmze portfolo allocato []

rl_portfolio This Repository uses Reinforcement Learning and Supervised learning to Optimize portfolio allocation. The goal is to make profitable agen

Deepender Singla 165 Dec 02, 2022
Offical code for the paper: "Growing 3D Artefacts and Functional Machines with Neural Cellular Automata" https://arxiv.org/abs/2103.08737

Growing 3D Artefacts and Functional Machines with Neural Cellular Automata Video of more results: https://www.youtube.com/watch?v=-EzztzKoPeo Requirem

Robotics Evolution and Art Lab 51 Jan 01, 2023
Fully Adaptive Bayesian Algorithm for Data Analysis (FABADA) is a new approach of noise reduction methods. In this repository is shown the package developed for this new method based on \citepaper.

Fully Adaptive Bayesian Algorithm for Data Analysis FABADA FABADA is a novel non-parametric noise reduction technique which arise from the point of vi

18 Oct 20, 2022
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Learning Continuous Signed Distance Functions for Shape Representation

DeepSDF This is an implementation of the CVPR '19 paper "DeepSDF: Learning Continuous Signed Distance Functions for Shape Representation" by Park et a

Meta Research 1.1k Jan 01, 2023
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
[ WSDM '22 ] On Sampling Collaborative Filtering Datasets

On Sampling Collaborative Filtering Datasets This repository contains the implementation of many popular sampling strategies, along with various expli

Noveen Sachdeva 17 Dec 08, 2022
This repository lets you interact with Lean through a REPL.

lean-gym This repository lets you interact with Lean through a REPL. See Formal Mathematics Statement Curriculum Learning for a presentation of lean-g

OpenAI 87 Dec 28, 2022
Accurate identification of bacteriophages from metagenomic data using Transformer

PhaMer is a python library for identifying bacteriophages from metagenomic data. PhaMer is based on a Transorfer model and rely on protein-based vocab

Kenneth Shang 9 Nov 30, 2022
Yas CRNN model training - Yet Another Genshin Impact Scanner

Yas-Train Yet Another Genshin Impact Scanner 又一个原神圣遗物导出器 介绍 该仓库为 Yas 的模型训练程序 相关资料 MobileNetV3 CRNN 使用 假设你会设置基本的pytorch环境。 生成数据集 python main.py gen 训练

wormtql 18 Jan 08, 2023
Official repository of ICCV21 paper "Viewpoint Invariant Dense Matching for Visual Geolocalization"

Viewpoint Invariant Dense Matching for Visual Geolocalization: PyTorch implementation This is the implementation of the ICCV21 paper: G Berton, C. Mas

Gabriele Berton 44 Jan 03, 2023
SW components and demos for visual kinship recognition. An emphasis is put on the FIW dataset-- data loaders, benchmarks, results in summary.

FIW Data Development Kit Table of Contents Introduction Families In the Wild Database Publications Organization To Do License Getting Involved Introdu

Joseph P. Robinson 12 Jun 04, 2022