Meta-Learning Sparse Implicit Neural Representations (NeurIPS 2021)

Overview

Meta-SparseINR

Official PyTorch implementation of "Meta-learning Sparse Implicit Neural Representations" (NeurIPS 2021) by Jaeho Lee*, Jihoon Tack*, Namhoon Lee, and Jinwoo Shin.

TL;DR: We develop a scalable method to learn sparse neural representations for a large set of signals.

Illustrations of (a) an implicit neural representation, (b) the standard pruning algorithm that prunes and retrains the model for each signal considered, and (c) the proposed Meta-SparseINR procedure to find a sparse initial INR, which can be trained further to fit each signal.

1. Requirements

conda create -n inrprune python=3.7
conda activate inrprune

conda install pytorch torchvision cudatoolkit=11.1 -c pytorch -c nvidia

pip install torchmeta
pip install imageio einops tensorboardX

Datasets

  • Download Imagenette and SDF file from the following page:
  • One should locate the dataset into /data folder

2. Training

Training option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}

Meta-SparseINR (ours)

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (magnitude pruning)
python main.py --exp metaprune --epoch 30000 --pruner MP --amount 0.2 --data <DATASET>

Random Pruning

# Train dense model first
python main.py --exp meta_baseline --epoch 150000 --data <DATASET>

# Iterative pruning (random pruning)
python main.py --exp metaprune --epoch 30000 --pruner RP --amount 0.2 --data <DATASET>

Dense-Narrow

# Train dense model with a given width

# Shell script style
widthlist="230 206 184 164 148 132 118 106 94 84 76 68 60 54 48 44 38 34 32 28"
for width in $widthlist
do
    python main.py --exp meta_baseline --epoch 150000 --data <DATASET> --width $width --id width_$width
done

3. Evaluation

Evaluation option

The option for the training method is as follows:

  • <DATASET>: {celeba,sdf,imagenette}
  • <OPT_TYPE>: {default,two_step_sgd}, default denotes adam optimizer with 100 steps.

We assume all checkpoints are trained.

Meta-SparseINR (ours)

python eval.py --exp prune --pruner MP --data <DATASET> --opt_type <OPT_TYPE>

Baselines

# Random pruning
python eval.py --exp prune --pruner RP --data <DATASET> --opt_type <OPT_TYPE>

# Dense-Narrow
python eval.py --exp dense_narrow --data <DATASET> --opt_type <OPT_TYPE>

# MAML + One-Shot
python eval.py --exp one_shot --data <DATASET> --opt_type default

# MAML + IMP
python eval.py --exp imp --data <DATASET> --opt_type default

# Scratch
python eval.py --exp scratch --data <DATASET> --opt_type <OPT_TYPE>

4. Experimental Results

Citation

@inproceedings{lee2021meta,
  title={Meta-learning Sparse Implicit Neural Representations},
  author={Jaeho Lee and Jihoon Tack and Namhoon Lee and Jinwoo Shin},
  booktitle={Advances in Neural Information Processing Systems},
  year={2021}
}

Reference

Owner
Jaeho Lee
Postdoctoral researcher at KAIST.
Jaeho Lee
Reinforcement learning library(framework) designed for PyTorch, implements DQN, DDPG, A2C, PPO, SAC, MADDPG, A3C, APEX, IMPALA ...

Automatic, Readable, Reusable, Extendable Machin is a reinforcement library designed for pytorch. Build status Platform Status Linux Windows Supported

Iffi 348 Dec 24, 2022
Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification.

Easy Few-Shot Learning Ready-to-use code and tutorial notebooks to boost your way into few-shot image classification. This repository is made for you

Sicara 399 Jan 08, 2023
Sequence to Sequence Models with PyTorch

Sequence to Sequence models with PyTorch This repository contains implementations of Sequence to Sequence (Seq2Seq) models in PyTorch At present it ha

Sandeep Subramanian 708 Dec 19, 2022
GNN-based Recommendation Benchma

GRecX A Fair Benchmark for GNN-based Recommendation Preliminary Comparison DiffNet-Yelp dataset (featureless) Algo 73 Oct 17, 2022

Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Combining Diverse Feature Priors

Combining Diverse Feature Priors This repository contains code for reproducing the results of our paper. Paper: https://arxiv.org/abs/2110.08220 Blog

Madry Lab 5 Nov 12, 2022
Code for all the Advent of Code'21 challenges mostly written in python

Advent of Code 21 Code for all the Advent of Code'21 challenges mostly written in python. They are not necessarily the best or fastest solutions but j

4 May 26, 2022
PrimitiveNet: Primitive Instance Segmentation with Local Primitive Embedding under Adversarial Metric (ICCV 2021)

PrimitiveNet Source code for the paper: Jingwei Huang, Yanfeng Zhang, Mingwei Sun. [PrimitiveNet: Primitive Instance Segmentation with Local Primitive

Jingwei Huang 47 Dec 06, 2022
[ICCV2021] Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving Safety-aware Motion Prediction with Unseen Vehicles for Autonomous Driving

Xuanchi Ren 44 Dec 03, 2022
an implementation of Video Frame Interpolation via Adaptive Separable Convolution using PyTorch

This work has now been superseded by: https://github.com/sniklaus/revisiting-sepconv sepconv-slomo This is a reference implementation of Video Frame I

Simon Niklaus 985 Jan 08, 2023
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
Deep deconfounded recommender (Deep-Deconf) for paper "Deep causal reasoning for recommendations"

Deep Causal Reasoning for Recommender Systems The codes are associated with the following paper: Deep Causal Reasoning for Recommendations, Yaochen Zh

Yaochen Zhu 22 Oct 15, 2022
PyTorch reimplementation of hand-biomechanical-constraints (ECCV2020)

Hand Biomechanical Constraints Pytorch Unofficial PyTorch reimplementation of Hand-Biomechanical-Constraints (ECCV2020). This project reimplement foll

Hao Meng 59 Dec 20, 2022
Amazing-Python-Scripts - 🚀 Curated collection of Amazing Python scripts from Basics to Advance with automation task scripts.

📑 Introduction A curated collection of Amazing Python scripts from Basics to Advance with automation task scripts. This is your Personal space to fin

Avinash Ranjan 1.1k Dec 29, 2022
patchmatch和patchmatchstereo算法的python实现

patchmatch patchmatch以及patchmatchstereo算法的python版实现 patchmatch参考 github patchmatchstereo参考李迎松博士的c++版代码 由于patchmatchstereo没有做任何优化,并且是python的代码,主要是方便解析算

Sanders Bao 11 Dec 02, 2022
Code for paper entitled "Improving Novelty Detection using the Reconstructions of Nearest Neighbours"

NLN: Nearest-Latent-Neighbours A repository containing the implementation of the paper entitled Improving Novelty Detection using the Reconstructions

Michael (Misha) Mesarcik 4 Dec 14, 2022
Unsupervised Foreground Extraction via Deep Region Competition

Unsupervised Foreground Extraction via Deep Region Competition [Paper] [Code] The official code repository for NeurIPS 2021 paper "Unsupervised Foregr

28 Nov 06, 2022
Code for "Unsupervised State Representation Learning in Atari"

Unsupervised State Representation Learning in Atari Ankesh Anand*, Evan Racah*, Sherjil Ozair*, Yoshua Bengio, Marc-Alexandre Côté, R Devon Hjelm This

Mila 217 Jan 03, 2023
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
[AAAI 2022] Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation with Limited Annotation

A paper Introduction This is an official release of the paper Separate Contrastive Learning for Organs-at-Risk and Gross-Tumor-Volume Segmentation wit

Jiacheng Wang 14 Dec 08, 2022