Multivariate Boosted TRee

Related tags

Deep Learningmbtr
Overview

Documentation Status Build Status codecov Latest Version License: MIT

Multivariate Boosted TRee

What is MBTR

MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can handle arbitrary multivariate losses, as long as their gradient and Hessian are known. Gradient boosted trees are competition-winning, general-purpose, non-parametric regressors, which exploit sequential model fitting and gradient descent to minimize a specific loss function. The most popular implementations are tailored to univariate regression and classification tasks, precluding the possibility of capturing multivariate target cross-correlations and applying conditional penalties to the predictions. This package allows to arbitrarily regularize the predictions, so that properties like smoothness, consistency and functional relations can be enforced.

Installation

pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git

Usage

MBT regressor follows the scikit-learn syntax for regressors. Creating a default instance and training it is as simple as:

m = MBT().fit(x,y)

while predictions for the test set are obtained through

y_hat = m.predict(x_te)

The most important parameters are the number of boosts n_boost, that is, the number of fitted trees, learning_rate and the loss_type. An extensive explanation of the different parameters can be found in the documentation.

Documentation

Documentation and examples on the usage can be found at docs.

Reference

If you make use of this software for your work, we would appreciate it if you would cite us:

Lorenzo Nespoli and Vasco Medici (2020). Multivariate Boosted Trees and Applications to Forecasting and Control arXiv

@article{nespoli2020multivariate,
  title={Multivariate Boosted Trees and Applications to Forecasting and Control},
  author={Nespoli, Lorenzo and Medici, Vasco},
  journal={arXiv preprint arXiv:2003.03835},
  year={2020}
}

Acknowledgments

The authors would like to thank the Swiss Federal Office of Energy (SFOE) and the Swiss Competence Center for Energy Research - Future Swiss Electrical Infrastructure (SCCER-FURIES), for their financial and technical support to this research work.

You might also like...
Grammar Induction using a Template Tree Approach

Gitta Gitta ("Grammar Induction using a Template Tree Approach") is a method for inducing context-free grammars. It performs particularly well on data

Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21)

Learning Structural Edits via Incremental Tree Transformations Code for "Learning Structural Edits via Incremental Tree Transformations" (ICLR'21) 1.

Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.
Deep Image Search is an AI-based image search engine that includes deep transfor learning features Extraction and tree-based vectorized search.

Deep Image Search - AI-Based Image Search Engine Deep Image Search is an AI-based image search engine that includes deep transfer learning features Ex

Code for Graph-to-Tree Learning for Solving Math Word Problems (ACL 2020)

Graph-to-Tree Learning for Solving Math Word Problems PyTorch implementation of Graph based Math Word Problem solver described in our ACL 2020 paper G

NAS Benchmark in
NAS Benchmark in "Prioritized Architecture Sampling with Monto-Carlo Tree Search", CVPR2021

NAS-Bench-Macro This repository includes the benchmark and code for NAS-Bench-Macro in paper "Prioritized Architecture Sampling with Monto-Carlo Tree

The official code for paper "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Modeling".

R2D2 This is the official code for paper titled "R2D2: Recursive Transformer based on Differentiable Tree for Interpretable Hierarchical Language Mode

Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks
Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks

SSTNet Instance Segmentation in 3D Scenes using Semantic Superpoint Tree Networks(ICCV2021) by Zhihao Liang, Zhihao Li, Songcen Xu, Mingkui Tan, Kui J

Implementation of fast algorithms for Maximum Spanning Tree (MST) parsing that includes fast ArcMax+Reweighting+Tarjan algorithm for single-root dependency parsing.

Fast MST Algorithm Implementation of fast algorithms for (Maximum Spanning Tree) MST parsing that includes fast ArcMax+Reweighting+Tarjan algorithm fo

This is the code repository implementing the paper
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

Comments
  • Is it possible to define custom loss function ?

    Is it possible to define custom loss function ?

    Dear all, First thank you for developping this tool, that I believe is of great interest. I am working with:

    • environmental variables (e.g. temperature, salinity)
    • multi-dimensional targets, that are relative abundance, with their sum = 1 for each site

    Therefore, I was wondering if it is possible to implement a custom loss function in the mbtr framework, that would be adapted for proportions. Please note that I am quite new to python.

    To do some testing, I tryed to dupplicate the mse loss function with another name in the losses.py file and adding the new loss in the LOSS_MAP in __inits__.py. Then I compiled the files. However, I have this error when trying to run the model from the multi_reg.py example:

    >>> m = MBT(loss_type = 'mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      3%|▎         | 1/30 [00:03<01:45,  3.63s/it]
    >>> m = MBT(loss_type = 'custom_mse', n_boosts=30,  min_leaf=100, lambda_weights=1e-3).fit(x_tr, y_tr, do_plot=True)
      0%|          | 0/30 [00:00<?, ?it/s]KeyError: 'custom_mse'
    

    It seems that the new loss is not recognised in LOSS_MAP:

    >>> LOSS_MAP = {'custom_mse': losses.custom_MSE,
    ...             'mse': losses.MSE,
    ...             'time_smoother': losses.TimeSmoother,
    ...             'latent_variable': losses.LatentVariable,
    ...             'linear_regression': losses.LinRegLoss,
    ...             'fourier': losses.FourierLoss,
    ...             'quantile': losses.QuantileLoss,
    ...             'quadratic_quantile': losses.QuadraticQuantileLoss}
    AttributeError: module 'mbtr.losses' has no attribute 'custom_MSE'
    

    I guess that I missed something when trying to dupplicate and rename the mse loss. I would appreciate any help if the definition of a custom loss function is possible.

    Best regards,

    opened by alexschickele 2
  • Dataset cannot be reached

    Dataset cannot be reached

    Hi thank you for your effort to create this. I want to try this but i cannot download nor visit the web that you provided in example multivariate_forecas.py

    Is there any alternative link for that dataset? thank you regards!

    opened by kristfrizh 1
  • Error at import time with python 3.10.*

    Error at import time with python 3.10.*

    I want to use MBTR in a teaching module and I need to use jupyter-lab inside a conda environment for teaching purposes. While MBTR works as expected in a vanilla python 3.8, it errors out (on the same machine) in a conda environment using python 3.10

    Steps to reproduce

    conda create --name testenv
    conda activate testenv
    
    conda install -c conda-forge jupyterlab
    pip install --upgrade git+https://github.com/supsi-dacd-isaac/mbtr.git
    # to make sure to get the latest version; but the version on pypi gives the same error 
    

    Then

    python
    

    and in python

    from mbtr.mbtr import MBT
    

    which outputs the following error

    Traceback (most recent call last):
      File "<stdin>", line 1, in <module>
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 317, in <module>
        def leaf_stats(y, edges, x, order):
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/decorators.py", line 219, in wrapper
        disp.compile(sig)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 965, in compile
        cres = self._compiler.compile(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 129, in compile
        raise retval
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 139, in _compile_cached
        retval = self._compile_core(args, return_type)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/dispatcher.py", line 152, in _compile_core
        cres = compiler.compile_extra(self.targetdescr.typing_context,
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 716, in compile_extra
        return pipeline.compile_extra(func)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 452, in compile_extra
        return self._compile_bytecode()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 520, in _compile_bytecode
        return self._compile_core()
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 499, in _compile_core
        raise e
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler.py", line 486, in _compile_core
        pm.run(self.state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 368, in run
        raise patched_exception
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 356, in run
        self._runPass(idx, pass_inst, state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_lock.py", line 35, in _acquire_compile_lock
        return func(*args, **kwargs)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 311, in _runPass
        mutated |= check(pss.run_pass, internal_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/compiler_machinery.py", line 273, in check
        mangled = func(compiler_state)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 105, in run_pass
        typemap, return_type, calltypes, errs = type_inference_stage(
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typed_passes.py", line 83, in type_inference_stage
        errs = infer.propagate(raise_errors=raise_errors)
      File "/home/myself/.conda/envs/testenv/lib/python3.10/site-packages/numba/core/typeinfer.py", line 1086, in propagate
        raise errors[0]
    numba.core.errors.TypingError: Failed in nopython mode pipeline (step: nopython frontend)
    No conversion from UniTuple(none x 2) to UniTuple(array(float64, 2d, A) x 2) for '$116return_value.7', defined at None
    
    File ".conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    
    During: typing of assignment at /home/myself/.conda/envs/testenv/lib/python3.10/site-packages/mbtr/mbtr.py (327)
    
    File ".conda/envs/test/lib/python3.10/site-packages/mbtr/mbtr.py", line 327:
    def leaf_stats(y, edges, x, order):
        <source elided>
            s_left, s_right = None, None
        return s_left, s_right
        ^
    

    Thanks in advance for any pointer/help. The course where I want to present this is a summer course and is closing in on me 😉

    opened by jiho 0
Releases(v0.1.3)
Owner
SUPSI-DACD-ISAAC
SUPSI-DACD-ISAAC
FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware.

FIRM-AFL FIRM-AFL is the first high-throughput greybox fuzzer for IoT firmware. FIRM-AFL addresses two fundamental problems in IoT fuzzing. First, it

356 Dec 23, 2022
retweet 4 satoshi ⚡️

rt4sat retweet 4 satoshi This bot is the codebase for https://twitter.com/rt4sat please feel free to create an issue if you saw any bugs basically thi

6 Sep 30, 2022
Source code for the ACL-IJCNLP 2021 paper entitled "T-DNA: Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adaptation" by Shizhe Diao et al.

T-DNA Source code for the ACL-IJCNLP 2021 paper entitled Taming Pre-trained Language Models with N-gram Representations for Low-Resource Domain Adapta

shizhediao 17 Dec 22, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Attack on Confidence Estimation algorithm from the paper "Disrupting Deep Uncertainty Estimation Without Harming Accuracy"

Attack on Confidence Estimation (ACE) This repository is the official implementation of "Disrupting Deep Uncertainty Estimation Without Harming Accura

3 Mar 30, 2022
A python library for self-supervised learning on images.

Lightly is a computer vision framework for self-supervised learning. We, at Lightly, are passionate engineers who want to make deep learning more effi

Lightly 2k Jan 08, 2023
A platform for intelligent agent learning based on a 3D open-world FPS game developed by Inspir.AI.

Wilderness Scavenger: 3D Open-World FPS Game AI Challenge This is a platform for intelligent agent learning based on a 3D open-world FPS game develope

46 Nov 24, 2022
The official PyTorch implementation for NCSNv2 (NeurIPS 2020)

Improved Techniques for Training Score-Based Generative Models This repo contains the official implementation for the paper Improved Techniques for Tr

174 Dec 26, 2022
CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022)

CMUA-Watermark The official code for CMUA-Watermark: A Cross-Model Universal Adversarial Watermark for Combating Deepfakes (AAAI2022) arxiv. It is bas

50 Nov 26, 2022
Madanalysis5 - A package for event file analysis and recasting of LHC results

Welcome to MadAnalysis 5 Outline What is MadAnalysis 5? Requirements Downloading

MadAnalysis 15 Jan 01, 2023
The code for paper "Learning Implicit Fields for Generative Shape Modeling".

implicit-decoder The tensorflow code for paper "Learning Implicit Fields for Generative Shape Modeling", Zhiqin Chen, Hao (Richard) Zhang. Project pag

Zhiqin Chen 353 Dec 30, 2022
Plotting points that lie on the intersection of the given curves using gradient descent.

Plotting intersection of curves using gradient descent Webapp Link --- What's the app about Why this app Plotting functions and their intersection. A

Divakar Verma 2 Jan 09, 2022
The description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts.

FMFCC-A This project is the description of FMFCC-A (audio track of FMFCC) dataset and Challenge resluts. The FMFCC-A dataset is shared through BaiduCl

18 Dec 24, 2022
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Two-stage CenterNet

Probabilistic two-stage detection Two-stage object detectors that use class-agnostic one-stage detectors as the proposal network. Probabilistic two-st

Xingyi Zhou 1.1k Jan 03, 2023
An 16kHz implementation of HiFi-GAN for soft-vc.

HiFi-GAN An 16kHz implementation of HiFi-GAN for soft-vc. Relevant links: Official HiFi-GAN repo HiFi-GAN paper Soft-VC repo Soft-VC paper Example Usa

Benjamin van Niekerk 42 Dec 27, 2022
Double pendulum simulator using a symplectic Euler's method and Hamiltonian mechanics

Symplectic Double Pendulum Simulator Double pendulum simulator using a symplectic Euler's method. The program calculates the momentum and position of

Scott Marino 1 Jan 12, 2022
Repository of continual learning papers

Continual learning paper repository This repository contains an incomplete (but dynamically updated) list of papers exploring continual learning in ma

29 Jan 05, 2023
Lucid library adapted for PyTorch

Lucent PyTorch + Lucid = Lucent The wonderful Lucid library adapted for the wonderful PyTorch! Lucent is not affiliated with Lucid or OpenAI's Clarity

Lim Swee Kiat 520 Dec 26, 2022
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022