This repository contains the code and models for the following paper.

Overview

DC-ShadowNet

Introduction

This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised Domain-Classifier Guided Network. (ICCV'2021) Yeying Jin, Aashish Sharma and Robby T. Tan

Abstract

Shadow removal from a single image is generally still an open problem. Most existing learning-based methods use supervised learning and require a large number of paired images (shadow and corresponding non-shadow images) for training. A recent unsupervised method, Mask-ShadowGAN, addresses this limitation. However, it requires a binary mask to represent shadow regions, making it inapplicable to soft shadows. To address the problem, in this paper, we propose an unsupervised domain-classifier guided shadow removal network, DC-ShadowNet. Specifically, we propose to integrate a shadow/shadow-free domain classifier into a generator and its discriminator, enabling them to focus on shadow regions. To train our network, we introduce novel losses based on physics-based shadow-free chromaticity, shadow-robust perceptual features, and boundary smoothness. Moreover, we show that our unsupervised network can be used for test-time training that further improves the results. Our experiments show that all these novel components allow our method to handle soft shadows, and also to perform better on hard shadows both quantitatively and qualitatively than the existing state-of-the-art shadow removal methods.

Overview of the proposed method:

Datasets

  1. SRD (please download train and test from the authors). Extracted Shadow Masks in the SRD Dataset

  2. AISTD

  3. LRSS: Soft Shadow Dataset

  4. ISTD

  5. USR: Unpaired Shadow Removal Dataset

Shadow Removal Results:

  1. SDR Dataset DC-ShadowNet Results, All Results

  1. AISTD Dataset DC-ShadowNet Results, All Results

  2. LRSS Soft Shadow Dataset DC-ShadowNet Results, All Results

  3. ISTD Dataset DC-ShadowNet Results

  4. USR Dataset DC-ShadowNet Results

Evaluation

The default root mean squared error (RMSE) evaluation code used by all methods (including ours) actually computes mean absolute error (MAE).

  1. The faster version MAE evaluation code
  2. The original version MAE evaluation code

1.1 SRD Dataset, set the paths of the shadow removal result and the dataset in demo_srd_release.m and then run it.

Get the following Table 1 in the main paper on the SRD dataset (size: 256x256).

Method Training All Shadow Non-Shadow
DC-ShadowNet Unpaired 4.66 7.70 3.39
Mask-ShadowGAN Unpaired 6.40 11.46 4.29
DSC Paired 4.86 8.81 3.23
DeShadowNet Paired 5.11 3.57 8.82
Gong Prior 12.35 25.43 6.91
Input Image N/A 13.77 37.40 3.96

1.2 AISTD Dataset, set the paths of the shadow removal result and the dataset in demo_aistd_release.m and then run it.

Get the following Table 2 in the main paper on the AISTD dataset (size: 256x256).

Method Training All Shadow Non-Shadow
DC-ShadowNet Unpaired 4.6 10.3 3.5

1.3 LRSS Soft Shadow Dataset, set the paths of the shadow removal result and the dataset in demo_lrss_release.m and then run it.

Get the following Table 3 in the main paper on the LRSS dataset (size: 256x256).

Method Training All
DC-ShadowNet Unpaired 3.48
Input Image N/A 12.26

Pre-trained Model

  1. Download the pre-trained SRD model, put in results/SRD/model/

  2. Download the pre-trained AISTD model, put in results/AISTD/model/

  3. Download the pre-trained ISTD model, put in results/ISTD/model/

  4. Download the pre-trained USR model, put in results/USR/model/

Test

python main_test.py --dataset SRD --datasetpath YOURPATH --phase test

Results: results/SRD/iteration/outputB

Train

  1. Implement the papers On the removal of shadows from images (TPAMI,05) and Recovery of Chromaticity Image Free from Shadows via Illumination Invariance (ICCV,03)

Directory

  1. Download Datasets and run 1, get the Shadow-Free Chromaticity Maps after Illumination Compensation, and put them in the trainC folder, you should see the following directory structure.
${DC-ShadowNet-Hard-and-Soft-Shadow-Removal}
|-- dataset
    |-- SRD
      |-- trainA ## Shadow 
      |-- trainB ## Shadow-free 
      |-- trainC ## Shadow-Free Chromaticity Maps after Illumination Compensation
      |-- testA  ## Shadow 
      |-- testB  ## Shadow-free 
...
  1. python main.py --dataset SRD --phase train

Shadow-Robust Feature

Get the following Figure 5 in the main paper, VGG feature visualization code is in feature_release folder,

python test_VGGfeatures.py

Results: ./results_VGGfeatures/shadow_VGGfeatures/layernumber/imagenumber/visual_featurenumber_RMSE.jpg

Boundary Smoothness Loss

Get the following Figure 8 in the main paper, shadow boundary code is in boundary_smooth folder,

run getRTVdenMask.m

Results: input_softmask_boundary.jpg

Citation

Please kindly cite our paper if you are using our codes:

Owner
AuAgCu
Computer Vision/ Deep Learning
AuAgCu
The official PyTorch code for 'DER: Dynamically Expandable Representation for Class Incremental Learning' accepted by CVPR2021

DER.ClassIL.Pytorch This repo is the official implementation of DER: Dynamically Expandable Representation for Class Incremental Learning (CVPR 2021)

rhyssiyan 108 Jan 01, 2023
Fuwa-http - The http client implementation for the fuwa eco-system

Fuwa HTTP The HTTP client implementation for the fuwa eco-system Example import

Fuwa 2 Feb 16, 2022
Fair Recommendation in Two-Sided Platforms

Fair Recommendation in Two-Sided Platforms

gourabgggg 1 Nov 10, 2021
To prepare an image processing model to classify the type of disaster based on the image dataset

Disaster Classificiation using CNNs bunnysaini/Disaster-Classificiation Goal To prepare an image processing model to classify the type of disaster bas

Bunny Saini 1 Jan 24, 2022
LSTM Neural Networks for Spectroscopic Studies of Type Ia Supernovae

Package Description The difficulties in acquiring spectroscopic data have been a major challenge for supernova surveys. snlstm is developed to provide

7 Oct 11, 2022
PyTorch code of "SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks"

SLAPS-GNN This repo contains the implementation of the model proposed in SLAPS: Self-Supervision Improves Structure Learning for Graph Neural Networks

60 Dec 22, 2022
The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining Concept-Oriented Shared Information".

The HIST framework for stock trend forecasting The implementation of the paper "HIST: A Graph-based Framework for Stock Trend Forecasting via Mining C

Wentao Xu 110 Dec 27, 2022
An implementation of EWC with PyTorch

EWC.pytorch An implementation of Elastic Weight Consolidation (EWC), proposed in James Kirkpatrick et al. Overcoming catastrophic forgetting in neural

Ryuichiro Hataya 166 Dec 22, 2022
Simple tutorials using Google's TensorFlow Framework

TensorFlow-Tutorials Introduction to deep learning based on Google's TensorFlow framework. These tutorials are direct ports of Newmu's Theano Tutorial

Nathan Lintz 6k Jan 06, 2023
Linear algebra python - Number of operations and problems in Linear Algebra and Numerical Linear Algebra

Linear algebra in python Number of operations and problems in Linear Algebra and

Alireza 5 Oct 09, 2022
Official Pytorch Implementation of: "ImageNet-21K Pretraining for the Masses"(2021) paper

ImageNet-21K Pretraining for the Masses Paper | Pretrained models Official PyTorch Implementation Tal Ridnik, Emanuel Ben-Baruch, Asaf Noy, Lihi Zelni

574 Jan 02, 2023
Python PID Tuner - Based on a FOPDT model obtained using a Open Loop Process Reaction Curve

PythonPID_Tuner Step 1: Takes a Process Reaction Curve in csv format - assumes data at 100ms interval (column names CV and PV) Step 2: Makes a rough e

6 Jan 14, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments 😀 😃 😆 Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images

BaSiC Matlab code accompanying A BaSiC Tool for Background and Shading Correction of Optical Microscopy Images by Tingying Peng, Kurt Thorn, Timm Schr

Marr Lab 34 Dec 18, 2022
learned_optimization: Training and evaluating learned optimizers in JAX

learned_optimization: Training and evaluating learned optimizers in JAX learned_optimization is a research codebase for training learned optimizers. I

Google 533 Dec 30, 2022
Receptive Field Block Net for Accurate and Fast Object Detection, ECCV 2018

Receptive Field Block Net for Accurate and Fast Object Detection By Songtao Liu, Di Huang, Yunhong Wang Updatas (2021/07/23): YOLOX is here!, stronger

Liu Songtao 1.4k Dec 21, 2022
Generative Query Network (GQN) in PyTorch as described in "Neural Scene Representation and Rendering"

Update 2019/06/24: A model trained on 10% of the Shepard-Metzler dataset has been added, the following notebook explains the main features of this mod

Jesper Wohlert 313 Dec 27, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Goal of the project : Detecting Temporal Boundaries in Sign Language videos

MVA RecVis course final project : Goal of the project : Detecting Temporal Boundaries in Sign Language videos. Sign language automatic indexing is an

Loubna Ben Allal 6 Dec 21, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023