URIE: Universal Image Enhancementfor Visual Recognition in the Wild

Related tags

Deep Learningurie
Overview

URIE: Universal Image Enhancementfor Visual Recognition in the Wild

This is the implementation of the paper "URIE: Universal Image Enhancement for Visual Recognition in the Wild" by T. Son, J. Kang, N. Kim, S. Cho and S. Kwak. Implemented on Python 3.7 and PyTorch 1.3.1.

urie_arch

For more information, check our project website and the paper on arxiv.

Requirements

You can install dependencies using

pip install -r requirements.txt

Datasets

You need to manually configure following environment variables to run the experiments.
All validation csv contains fixed combination of image, corruption and severity to guarantee the same result.
To conduct validation, you may need to change home folder path in each csv files given.

# DATA PATHS
export IMAGENET_ROOT=PATH_TO_IMAGENET
export IMAGENET_C_ROOT=PATH_TO_IMAGENET_C

# URIE VALIDATION

## ILSVRC VALIDATION
export IMAGENET_CLN_TNG_CSV=PROJECT_PATH/imagenet_dataset/imagenet_cln_train.csv
export IMAGENET_CLN_VAL_CSV=PROJECT_PATH/imagenet_dataset/imagenet_cln_val.csv
export IMAGENET_TNG_VAL_CSV=PROJECT_PATH/imagenet_dataset/imagenet_tng_tsfrm_validation.csv
export IMAGENET_VAL_VAL_CSV=PROJECT_PATH/imagenet_dataset/imagenet_val_tsfrm_validation.csv

## CUB VALIDATION
export CUB_IMAGE=PATH_TO_CUB
export DISTORTED_CUB_IMAGE=PATH_TO_CUB_C
export CUB_TNG_LABEL=PROJECT_PATH/datasets/eval_set/label_train_cub200_2011.csv
export CUB_VAL_LABEL=PROJECT_PATH/datasets/eval_set/label_val_cub200_2011.csv
export CUB_TNG_TRAIN_VAL=PROJECT_PATH/datasets/eval_set/tng_tsfrm_validation.csv
export CUB_TNG_TEST_VAL=PROJECT_PATH/datasets/eval_set/val_tsfrm_validation.csv

ILSVRC2012 Dataset

You can download the dataset from here and use it for training.

CUB dataset

You can download the original Caltech-UCSD Birds-200-2011 dataset from here, and corrupted version of CUB dataset from here.

Training

Training URIE with the proposed method on ILSVRC2012 dataset

python train_urie.py --batch_size BATCH_SIZE \
                     --cuda \
                     --test_batch_size BATCH_SIZE \
                     --epochs 60 \
                     --lr 0.0001 \
                     --seed 5000 \
                     --desc DESCRIPTION \
                     --save SAVE_PATH \
                     --load_classifier \
                     --dataset ilsvrc \
                     --backbone r50 \
                     --multi

Since training on ILSVRC dataset takes too long, you can train / test the model with cub dataset with following command.

python train_urie.py --batch_size BATCH_SIZE \
                     --cuda \
                     --test_batch_size BATCH_SIZE \
                     --epochs 60 \
                     --lr 0.0001 \
                     --seed 5000 \
                     --desc DESCRIPTION \
                     --save SAVE_PATH \
                     --load_classifier \
                     --dataset cub \
                     --backbone r50 \
                     --multi

Validation

You may use our pretrained model to validate or compare the results.

Classification

python inference.py --srcnn_pretrained_path PROJECT_PATH/ECCV_MODELS/ECCV_SKUNET_OURS.ckpt.pt \
                    --dataset DATASET \
                    --test_batch_size 32 \
                    --enhancer ours \
                    --recog r50

Detection

We have conducted object detection experiments using the codes from github.
You may compare the performance with the same evaluation code with attaching our model (or yours) in front of the detection model.

For valid comparison, you need to preprocess your data with mean and standard deviation.

Semantic Segmentation

We have conducted semantic segmentation experiments using the codes from github.
For backbone segmentation network, please you pretrained deeplabv3 on pytorch. You may compare the performance with the same evaluation code with attaching our model (or yours) in front of the segmentation model.

For valid comparison, you need to preprocess your data with mean and standard deviation.

Image Comparison

If you want just simple before & output image comparison, you can use render.py as following command.

python render.py IMAGE_FILE_PATH

Comparison
It runs given image file through pretrained URIE model, and saves enhanced output image comparison in current project file as "output.jpg".

BibTeX

If you use this code for your research, please consider citing:

@InProceedings{son2020urie,
  title={URIE: Universal Image Enhancement for Visual Recognition in the Wild},
  author={Son, Taeyoung and Kang, Juwon and Kim, Namyup and Cho, Sunghyun and Kwak, Suha},
  booktitle={ECCV},
  year={2020}
}
Owner
Taeyoung Son
Graduate student at POSTECH, South Korea
Taeyoung Son
Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Finetune the base 64 px GLIDE-text2im model from OpenAI on your own image-text dataset

Clay Mullis 82 Oct 13, 2022
CL-Gym: Full-Featured PyTorch Library for Continual Learning

CL-Gym: Full-Featured PyTorch Library for Continual Learning CL-Gym is a small yet very flexible library for continual learning research and developme

Iman Mirzadeh 36 Dec 25, 2022
SatelliteNeRF - PyTorch-based Neural Radiance Fields adapted to satellite domain

SatelliteNeRF PyTorch-based Neural Radiance Fields adapted to satellite domain.

Kai Zhang 46 Nov 20, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors

CZU-MHAD: A multimodal dataset for human action recognition utilizing a depth camera and 10 wearable inertial sensors   In order to facilitate the res

yujmo 11 Dec 12, 2022
Spectrum is an AI that uses machine learning to generate Rap song lyrics

Spectrum Spectrum is an AI that uses deep learning to generate rap song lyrics. View Demo Report Bug Request Feature Open In Colab About The Project S

39 Dec 16, 2022
LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation

LEDNet: A Lightweight Encoder-Decoder Network for Real-time Semantic Segmentation Table of Contents: Introduction Project Structure Installation Datas

Yu Wang 492 Dec 02, 2022
A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching.

LPM_Python A Python implementation of the Locality Preserving Matching (LPM) method for pruning outliers in image matching. The code is established ac

AoxiangFan 11 Nov 07, 2022
Toolchain to build Yoshi's Island from source code

Project-Y Toolchain to build Yoshi's Island (J) V1.0 from source code, by MrL314 Last updated: September 17, 2021 Setup To begin, download this toolch

MrL314 19 Apr 18, 2022
[CVPR 2022] TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing

TransEditor: Transformer-Based Dual-Space GAN for Highly Controllable Facial Editing (CVPR 2022) This repository provides the official PyTorch impleme

Billy XU 128 Jan 03, 2023
Machine Learning University: Accelerated Computer Vision Class

Machine Learning University: Accelerated Computer Vision Class This repository contains slides, notebooks, and datasets for the Machine Learning Unive

AWS Samples 1.3k Dec 28, 2022
Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators

Brax is a differentiable physics engine that simulates environments made up of rigid bodies, joints, and actuators. It's also a suite of learning algorithms to train agents to operate in these enviro

Google 1.5k Jan 02, 2023
Collaborative forensic timeline analysis

Timesketch Table of Contents About Timesketch Getting started Community Contributing About Timesketch Timesketch is an open-source tool for collaborat

Google 2.1k Dec 28, 2022
ICCV2021 Expert-Goal Trajectory Prediction

ICCV 2021: Where are you heading? Dynamic Trajectory Prediction with Expert Goal Examples This repository contains the code for the paper Where are yo

hz 21 Dec 12, 2022
A parallel framework for population-based multi-agent reinforcement learning.

MALib: A parallel framework for population-based multi-agent reinforcement learning MALib is a parallel framework of population-based learning nested

MARL @ SJTU 348 Jan 08, 2023
AI-Bot - 一个基于watermelon改造的OpenAI-GPT-2的智能机器人

AI-Bot 一个基于watermelon改造的OpenAI-GPT-2的智能机器人 在Binder上直接运行测试 目前有两种实现方式 TF2的GPT-2 TF

9 Nov 16, 2022
A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation.

TiSASRec.paddle A PaddlePaddle implementation of Time Interval Aware Self-Attentive Sequential Recommendation. Introduction 论文:Time Interval Aware Sel

Paddorch 2 Nov 28, 2021
Medical Image Segmentation using Squeeze-and-Expansion Transformers

Medical Image Segmentation using Squeeze-and-Expansion Transformers Introduction This repository contains the code of the IJCAI'2021 paper 'Medical Im

askerlee 172 Dec 20, 2022
Deep Learning Pipelines for Apache Spark

Deep Learning Pipelines for Apache Spark The repo only contains HorovodRunner code for local CI and API docs. To use HorovodRunner for distributed tra

Databricks 2k Jan 08, 2023
A deep learning object detector framework written in Python for supporting Land Search and Rescue Missions.

AIR: Aerial Inspection RetinaNet for supporting Land Search and Rescue Missions AIR is a deep learning based object detection solution to automate the

Accenture 13 Dec 22, 2022