Scripts for measuring and displaying thermal behavior on Voron 3D printers

Overview

Thermal Profiling

Measuring gantry deflection and frame expansion

This script runs a series of defined homing and probing routines designed to characterize how the perceived Z height of the printer changes as the printer frame heats up. It does this by interfacing with the Moonraker API, so you will need to ensure you have Moonraker running.

First, download the script measure_thermal_behavior.py to your printer's Pi. My favorite way to do this is to ssh into the Pi and just clone this git repository:

git clone https://github.com/tanaes/measure_thermal_behavior.git

Edit script for your printer

You'll need to edit the script (please use a vanilla text editer, such as Nano, that doesn't fuck with line endings) to include parameters appropriate for your printer. Please also fill in the META DATA section - this will help us find patterns across printer configurations!

######### META DATA #################
# For data collection organizational purposes
USER_ID = ''            # e.g. Discord handle
PRINTER_MODEL = ''      # e.g. 'voron_v2_350'
HOME_TYPE = ''          # e.g. 'nozzle_pin', 'microswitch_probe', etc.
PROBE_TYPE = ''         # e.g. 'klicky', 'omron', 'bltouch', etc.
X_RAILS = ''            # e.g. '1x_mgn12_front', '2x_mgn9'
BACKERS = ''            # e.g. 'steel_x_y', 'Ti_x-steel_y', 'mgn9_y'
NOTES = ''              # anything note-worthy about this particular run,
                        #     no "=" characters
#####################################

######### CONFIGURATION #############
BASE_URL = 'http://127.0.0.1'       # printer URL (e.g. http://192.168.1.15)
                                    # leave default if running locally
BED_TEMPERATURE = 105               # bed temperature for measurements
HE_TEMPERATURE = 100                # extruder temperature for measurements
MEASURE_INTERVAL = 1
N_SAMPLES = 3
HOT_DURATION = 3                    # time after bed temp reached to continue
                                    # measuring, in hours
COOL_DURATION = 0                   # hours to continue measuring after heaters
                                    # are disabled
SOAK_TIME = 5                       # minutes to wait for bed to heatsoak after reaching temp
MEASURE_GCODE = 'G28 Z'             # G-code called on repeated measurements, single line/macro only
QGL_CMD = "QUAD_GANTRY_LEVEL"       # command for QGL; e.g. "QUAD_GANTRY_LEVEL" or None if no QGL.
MESH_CMD = "BED_MESH_CALIBRATE"

# Full config section name of the frame temperature sensor
FRAME_SENSOR = "temperature_sensor frame"
# chamber thermistor config name. Change to match your own, or "" if none
# will also work with temperature_fan configs
CHAMBER_SENSOR = "temperature_sensor chamber"
# Extra temperature sensors to collect. Use same format as above but seperate
# quoted names with commas (if more than one).
EXTRA_SENSORS = {"frame1": "temperature_sensor frame1",
                 "z_switch": "temperature_sensor z_switch"}

#####################################

Note that if you want to calculate your printers frame expansion coefficient, you will need to include a frame temperature sensor definition.

If you haven't already, copy the modified measure_thermal_behavior.py to the Pi running Klipper/Moonraker.

Modify printer config

You may want to adjust a few elements of your printer configuration to give the most accurate results possible.

In particular, we have found that long/slow bed probing routines can influence results as the bed heats up the gantry extrusion over the course of the mesh probing! This often manifests as an apparent front-to-back slope in the mesh.

For our purposes, a quick probe is usually sufficient. Below are some suggested settings:

[probe]
##  Inductive Probe - If you use this section , please comment the [bltouch] section
##  This probe is not used for Z height, only Quad Gantry Leveling
##  In Z+ position
##  If your probe is NO instead of NC, add change pin to ^PA3
pin: ^PA3
x_offset: 0
y_offset: 18.0
z_offset: 8
speed: 10.0
lift_speed: 10.0
samples: 1
samples_result: median
sample_retract_dist: 1.5
samples_tolerance: 0.05
samples_tolerance_retries: 10


[bed_mesh]
speed: 500
horizontal_move_z: 10
mesh_min: 30,30
mesh_max: 320,320
probe_count: 7,7
mesh_pps: 2,2
relative_reference_index: 24
algorithm: bicubic
bicubic_tension: 0.2
move_check_distance: 3.0
split_delta_z: .010
fade_start: 1.0 
fade_end: 5.0

Adjust printer hardware

There are a couple hardware tips we've found that help to yield repeatable and accurate results.

Make sure nozzle is clean

If you are using a nozzle switch style endstop (as in stock Voron V1/V2), plastic boogers can ruin a profiling run. Make sure it is clean before the run!

Loosen bed screws

We have seen that over-constraint of the bed can severely impact mesh reliability at different temperatures. For optimal results, we suggest only having a single tight bed screw during profiling.

Run data collection

For accurate results, ensure the entire printer is at ambient temp. It can take a couple hours for the frame to cool down completely after a run!

Run the script with Python3:

python3 measure_thermal_behavior.py

You may want to run it using nohup so that closing your ssh connection doesn't kill the process:

nohup python3 measure_thermal_behavior.py > out.txt &

The script will run for about 3 hours. It will home, QGL, home again, then heat the bed up.

While the bed is heating, the toolhead will move up to 80% of maximum Z height. This is to reduce the influence of the bed heater on the X gantry extrusion as much as possible while the bed heats.

Once the bed is at temp, it will take the first mesh. Then it will collect z expansion data once per minute for the next two hours. Finally, it will do one more mesh and then cooldown.

Processing data

The script will write the data to the folder from which it is run.

You have two options to generate plots: run the plotting scripts on the Pi, or run them on your PC.

Running on the RPi

You'll need to install some additional libraries to run the plotting scripts on the Pi. First, use apt-get to install pip for python3 and libatlas, which is a requirement for Numpy:

sudo apt-get update
sudo apt-get install python3-pip
sudo apt-get install libatlas-base-dev

Then, you can use pip via python3 to install the plotting script dependencies using the requirements.txt file from this repository:

python3 -m pip install -r requirements.txt

Finally, to generate the plots, just call:

process_meshes.py thermal_quant_{}.json.

You can include as many json-formatted datafiles as you want as positional arguments.

Running on the PC

To run on your PC, download the thermal_quant_{}.json results file.

The rest is left as an exercise to the reader.

Owner
Jon Sanders
Jon Sanders
My 500 LED xmas tree

xmastree2020 This repository contains the code used for Matt's Christmas tree, as featured in "I wired my tree with 500 LED lights and calculated thei

Stand-up Maths 581 Jan 07, 2023
KIRI - Keyboard Interception, Remapping, and Injection using Raspberry Pi as an HID Proxy.

KIRI - Keyboard Interception, Remapping and Injection using Raspberry Pi as a HID Proxy. Near limitless abilities for a keyboard warrior. Features Sim

Viggo Falster 10 Dec 23, 2022
Count the number of people around you 👨‍👨‍👦 by monitoring wifi signals 📡 .

howmanypeoplearearound Count the number of people around you 👨‍👨‍👦 by monitoring wifi signals 📡 . howmanypeoplearearound calculates the number of

Zack 6.7k Jan 07, 2023
Python information display framework aimed at e-ink devices

My display, using a Raspberry Pi Zero W and Waveshare 6" e-paper hat infodisplay Modular information display framework aimed at e-ink devices. Built u

Niek Blankers 3 Apr 08, 2022
Automate gate/garage door opening via 433.92MHz emitter with Raspberry Pi, Home Assistant and Homekit.

Automate opening your garage door / gate Summary This project sums up how I automated opening my garage door using a Raspberry PI, a 433Mhz emitter, H

Julien Fouilhé 29 Nov 30, 2022
Trajectory optimization package for Mini-Pupper robot

Trajectory optimization package for Mini-Pupper robot Purpose of this repository is to provide low-torque and low-impact trajectory for Mini-Pupper qu

Sotaro Katayama 38 Aug 17, 2022
Raspberry Pi Power Button - Wake/Power Off/Restart(Double Press)

Control Raspberry pi with physically attached button. Wake, Power Off, and Restart (Double Press) . Python3 script runs as a service with easy installation.

Stas Yakobov 16 Oct 22, 2022
Toy robot that traverses on a finite surface

Toy Robot Challenge - Release Notes November 12, 2021 New features Initialisation - Users can set the home position and heading of the robot. Position

Ze Fei Teo 0 Feb 03, 2022
A small Python app to converse between MQTT messages and 433MHz RF signals.

mqtt-rf-bridge A small Python app to converse between MQTT messages and 433MHz RF signals. This acts as a bridge between Paho MQTT and rpi-rf. Require

David Swarbrick 3 Jan 27, 2022
Robot Framework keyword library wrapper for atlassian-python-api

Robot Framework keyword library wrapper for atlassian-python-api

Marcin Koperski 3 Jul 29, 2022
A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT

MQTT-GPIO A python script to poll RPi GPIO pins and subscribe and publish their state via MQTT using TLS. This script is short and meant to be edited

23 Oct 12, 2021
A IC scan test interface for Arduino

ICSCAN_ARDUINO Prerequisites Python 3.6 or higher arduino uno or nano what is this It is a bitstream tranceiver to test IC chip It sends bitstream to

Nifty Chips Laboratory 0 Sep 15, 2022
ROS2 nodes for Waveshare Alphabot2-Pi mobile robot.

ROS2 for Waveshare Alphabot2-Pi This repo contains ROS2 packages for the Waveshare Alphabot2-Pi mobile robot: alphabot2: it contains the nodes used to

Michele Rizzo 2 Oct 11, 2022
A LiteX project which builds a SoC with DRAM / HDIM output via the GPDI SYZYGY addon.

ButterStick GPDI LiteX demo A LiteX project which builds a SoC with DRAM / HDIM output via the GPDI SYZYGY addon. Getting started Connect GPDI board t

4 Nov 21, 2021
An arduino/ESP project that can play back G-Force data previously recorded

An arduino/ESP project that can play back G-Force data previously recorded

7 Apr 12, 2022
E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

E-Ink Magic Calendar that automatically syncs to Google Calendar and runs off a battery powered Raspberry Pi Zero

2.8k Dec 30, 2022
♟️ QR Code display for P4wnP1 (SSH, VNC, any text / URL)

♟️ Display QR Codes on P4wnP1 (p4wnsolo-qr) 🟢 QR Code display for P4wnP1 w/OLED (SSH, VNC, P4wnP1 WebGUI, any text / URL / exfiltrated data) Note: Th

PawnSolo 4 Dec 19, 2022
Simple Python script to decode and verify an European Health Certificate QR-code

A simple Python script to decode and verify an European Health Certificate QR-code.

Mathias Panzenböck 61 Oct 05, 2022
Using a raspberry pi, we listen to the coffee machine and count the number of coffee consumption

A typical datarootsian consumes high-quality fresh coffee in their office environment. The board of dataroots had a very critical decision by the end of 2021-Q2 regarding coffee consumption.

dataroots 51 Nov 21, 2022
Simple python3 implementation of microKanren with lots of type annotations for clarity

MicroKanren-py This is (yet another) python implementation of microKanren. It's a reasonably 1:1 translation of the code provided in the paper, but ev

Erik Derohanian 3 Dec 10, 2022