Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

Overview

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video

Qualtitative result Paper teaser video
aa bb

Introduction

This repository is the official Pytorch implementation of Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video. The base codes are largely borrowed from VIBE. Find more qualitative results here.

Installation

TCMR is tested on Ubuntu 16.04 with Pytorch 1.4 and Python 3.7.10. You may need sudo privilege for the installation.

source scripts/install_pip.sh

Quick demo

  • Download the pre-trained demo TCMR and required data by below command and download SMPL layers from here (male&female) and here (neutral). Put SMPL layers (pkl files) under ${ROOT}/data/base_data/.
source scripts/get_base_data.sh
  • Run demo with options (e.g. render on plain background). See more option details in bottom lines of demo.py.
  • A video overlayed with rendered meshes will be saved in ${ROOT}/output/demo_output/.
python demo.py --vid_file demo.mp4 --gpu 0 

Results

Here I report the performance of TCMR.

table table

See our paper for more details.

Running TCMR

Download pre-processed data (except InstaVariety dataset) from here. You may also download datasets from sources and pre-process yourself. Refer to this. Put SMPL layers (pkl files) under ${ROOT}/data/base_data/.

The data directory structure should follow the below hierarchy.

${ROOT}  
|-- data  
|   |-- base_data  
|   |-- preprocessed_data  
|   |-- pretrained_models

Evaluation

  • Download pre-trained TCMR weights from here.
  • Run the evaluation code with a corresponding config file to reproduce the performance in the tables of our paper.
# dataset: 3dpw, mpii3d, h36m 
python evaluate.py --dataset 3dpw --cfg ./configs/repr_table4_3dpw_model.yaml --gpu 0 
  • You may test options such as average filtering and rendering. See the bottom lines of ${ROOT}/lib/core/config.py.
  • We checked rendering results of TCMR on 3DPW validation and test sets.

Reproduction (Training)

  • Run the training code with a corresponding config file to reproduce the performance in the tables of our paper.
# training outputs are saved in `experiments` directory
# mkdir experiments
python train.py --cfg ./configs/repr_table4_3dpw_model.yaml --gpu 0 
  • Evaluate the trained TCMR (either checkpoint.pth.tar or model_best.pth.tar) on a target dataset.
  • You may test the motion discriminator introduced in VIBE by uncommenting the codes that have exclude motion discriminator notations.
  • We do not release NeuralAnnot SMPL annotations of Human36M used in our paper yet. Thus the performance in Table 6 may be slightly different with the paper.

Reference

@InProceedings{choi2020beyond,
  title={Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video},
  author={Choi, Hongsuk and Moon, Gyeongsik and Lee, Kyoung Mu},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}
  year={2021}
}
Owner
Hongsuk Choi
Research area: 3D human pose, shape, and mesh estimation
Hongsuk Choi
Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Source code of the paper "Deep Learning of Latent Variable Models for Industrial Process Monitoring".

Xiangyin Kong 7 Nov 08, 2022
An implementation of chunked, compressed, N-dimensional arrays for Python.

Zarr Latest Release Package Status License Build Status Coverage Downloads Gitter Citation What is it? Zarr is a Python package providing an implement

Zarr Developers 1.1k Dec 30, 2022
[ICCV'21] PlaneTR: Structure-Guided Transformers for 3D Plane Recovery

PlaneTR: Structure-Guided Transformers for 3D Plane Recovery This is the official implementation of our ICCV 2021 paper News There maybe some bugs in

73 Nov 30, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination

Lighthouse: Predicting Lighting Volumes for Spatially-Coherent Illumination Pratul P. Srinivasan, Ben Mildenhall, Matthew Tancik, Jonathan T. Barron,

Pratul Srinivasan 65 Dec 14, 2022
Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours

tsp-streamlit Animation of solving the traveling salesman problem to optimality using mixed-integer programming and iteratively eliminating sub tours.

4 Nov 05, 2022
This repo is to be freely used by ML devs to check the GAN performances without coding from scratch.

GANs for Fun Created because I can! GOAL The goal of this repo is to be freely used by ML devs to check the GAN performances without coding from scrat

Sagnik Roy 13 Jan 26, 2022
Official PyTorch code of DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context Graph and Relation-based Optimization (ICCV 2021 Oral).

DeepPanoContext (DPC) [Project Page (with interactive results)][Paper] DeepPanoContext: Panoramic 3D Scene Understanding with Holistic Scene Context G

Cheng Zhang 66 Nov 16, 2022
A solution to ensure Crowd Management with Contactless and Safe systems.

CovidTrack A Solution to ensure Crowd Management with Contactless and Safe systems. ML Model Mask Detection Social Distancing Detection Analytics Page

Om Khare 1 Nov 10, 2021
[TPAMI 2021] iOD: Incremental Object Detection via Meta-Learning

Incremental Object Detection via Meta-Learning To appear in an upcoming issue of the IEEE Transactions on Pattern Analysis and Machine Intelligence (T

Joseph K J 66 Jan 04, 2023
GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training @ KDD 2020

GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training Original implementation for paper GCC: Graph Contrastive Coding for Graph Neural N

THUDM 274 Dec 27, 2022
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Implementation of Ag-Grid component for Streamlit

streamlit-aggrid AgGrid is an awsome grid for web frontend. More information in https://www.ag-grid.com/. Consider purchasing a license from Ag-Grid i

Pablo Fonseca 556 Dec 31, 2022
Fusion-in-Decoder Distilling Knowledge from Reader to Retriever for Question Answering

This repository contains code for: Fusion-in-Decoder models Distilling Knowledge from Reader to Retriever Dependencies Python 3 PyTorch (currently tes

Meta Research 323 Dec 19, 2022
StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks

StackGAN Pytorch implementation Inception score evaluation StackGAN-v2-pytorch Tensorflow implementation for reproducing main results in the paper Sta

Han Zhang 1.8k Dec 21, 2022
A sample pytorch Implementation of ACL 2021 research paper "Learning Span-Level Interactions for Aspect Sentiment Triplet Extraction".

Span-ASTE-Pytorch This repository is a pytorch version that implements Ali's ACL 2021 research paper Learning Span-Level Interactions for Aspect Senti

来自丹麦的天籁 10 Dec 06, 2022
Source code for "Progressive Transformers for End-to-End Sign Language Production" (ECCV 2020)

Progressive Transformers for End-to-End Sign Language Production Source code for "Progressive Transformers for End-to-End Sign Language Production" (B

58 Dec 21, 2022
Learning Time-Critical Responses for Interactive Character Control

Learning Time-Critical Responses for Interactive Character Control Abstract This code implements the paper Learning Time-Critical Responses for Intera

Movement Research Lab 227 Dec 31, 2022
Training Very Deep Neural Networks Without Skip-Connections

DiracNets v2 update (January 2018): The code was updated for DiracNets-v2 in which we removed NCReLU by adding per-channel a and b multipliers without

Sergey Zagoruyko 585 Oct 12, 2022
YOLOv5 Series Multi-backbone, Pruning and quantization Compression Tool Box.

YOLOv5-Compression Update News Requirements 环境安装 pip install -r requirements.txt Evaluation metric Visdrone Model mAP ZhangYuan 719 Jan 02, 2023