Official Pytorch implementation of "Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video", CVPR 2021

Overview

TCMR: Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video

Qualtitative result Paper teaser video
aa bb

Introduction

This repository is the official Pytorch implementation of Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video. The base codes are largely borrowed from VIBE. Find more qualitative results here.

Installation

TCMR is tested on Ubuntu 16.04 with Pytorch 1.4 and Python 3.7.10. You may need sudo privilege for the installation.

source scripts/install_pip.sh

Quick demo

  • Download the pre-trained demo TCMR and required data by below command and download SMPL layers from here (male&female) and here (neutral). Put SMPL layers (pkl files) under ${ROOT}/data/base_data/.
source scripts/get_base_data.sh
  • Run demo with options (e.g. render on plain background). See more option details in bottom lines of demo.py.
  • A video overlayed with rendered meshes will be saved in ${ROOT}/output/demo_output/.
python demo.py --vid_file demo.mp4 --gpu 0 

Results

Here I report the performance of TCMR.

table table

See our paper for more details.

Running TCMR

Download pre-processed data (except InstaVariety dataset) from here. You may also download datasets from sources and pre-process yourself. Refer to this. Put SMPL layers (pkl files) under ${ROOT}/data/base_data/.

The data directory structure should follow the below hierarchy.

${ROOT}  
|-- data  
|   |-- base_data  
|   |-- preprocessed_data  
|   |-- pretrained_models

Evaluation

  • Download pre-trained TCMR weights from here.
  • Run the evaluation code with a corresponding config file to reproduce the performance in the tables of our paper.
# dataset: 3dpw, mpii3d, h36m 
python evaluate.py --dataset 3dpw --cfg ./configs/repr_table4_3dpw_model.yaml --gpu 0 
  • You may test options such as average filtering and rendering. See the bottom lines of ${ROOT}/lib/core/config.py.
  • We checked rendering results of TCMR on 3DPW validation and test sets.

Reproduction (Training)

  • Run the training code with a corresponding config file to reproduce the performance in the tables of our paper.
# training outputs are saved in `experiments` directory
# mkdir experiments
python train.py --cfg ./configs/repr_table4_3dpw_model.yaml --gpu 0 
  • Evaluate the trained TCMR (either checkpoint.pth.tar or model_best.pth.tar) on a target dataset.
  • You may test the motion discriminator introduced in VIBE by uncommenting the codes that have exclude motion discriminator notations.
  • We do not release NeuralAnnot SMPL annotations of Human36M used in our paper yet. Thus the performance in Table 6 may be slightly different with the paper.

Reference

@InProceedings{choi2020beyond,
  title={Beyond Static Features for Temporally Consistent 3D Human Pose and Shape from a Video},
  author={Choi, Hongsuk and Moon, Gyeongsik and Lee, Kyoung Mu},
  booktitle = {Conference on Computer Vision and Pattern Recognition (CVPR)}
  year={2021}
}
Owner
Hongsuk Choi
Research area: 3D human pose, shape, and mesh estimation
Hongsuk Choi
3D Avatar Lip Syncronization from speech (JALI based face-rigging)

visemenet-inference Inference Demo of "VisemeNet-tensorflow" VisemeNet is an audio-driven animator centric speech animation driving a JALI or standard

Junhwan Jang 17 Dec 20, 2022
This project is for a Twitter bot that monitors a bird feeder in my backyard. Any detected birds are identified and posted to Twitter.

Backyard Birdbot Introduction This is a silly hobby project to use existing ML models to: Detect any birds sighted by a webcam Identify whic

Chi Young Moon 71 Dec 25, 2022
The datasets and code of ACL 2021 paper "Aspect-Category-Opinion-Sentiment Quadruple Extraction with Implicit Aspects and Opinions".

Aspect-Category-Opinion-Sentiment (ACOS) Quadruple Extraction This repo contains the data sets and source code of our paper: Aspect-Category-Opinion-S

NUSTM 144 Jan 02, 2023
The code uses SegFormer for Semantic Segmentation on Drone Dataset.

SegFormer_Segmentation The code uses SegFormer for Semantic Segmentation on Drone Dataset. The details for the SegFormer can be obtained from the foll

Dr. Sander Ali Khowaja 1 May 08, 2022
YoHa - A practical hand tracking engine.

YoHa - A practical hand tracking engine.

2k Jan 06, 2023
Learning with Noisy Labels via Sparse Regularization, ICCV2021

Learning with Noisy Labels via Sparse Regularization This repository is the official implementation of [Learning with Noisy Labels via Sparse Regulari

Xiong Zhou 38 Oct 20, 2022
Code and data for ACL2021 paper Cross-Lingual Abstractive Summarization with Limited Parallel Resources.

Multi-Task Framework for Cross-Lingual Abstractive Summarization (MCLAS) The code for ACL2021 paper Cross-Lingual Abstractive Summarization with Limit

Yu Bai 43 Nov 07, 2022
STMTrack: Template-free Visual Tracking with Space-time Memory Networks

STMTrack This is the official implementation of the paper: STMTrack: Template-free Visual Tracking with Space-time Memory Networks. Setup Prepare Anac

Zhihong Fu 62 Dec 21, 2022
Simple ONNX operation generator. Simple Operation Generator for ONNX.

sog4onnx Simple ONNX operation generator. Simple Operation Generator for ONNX. https://github.com/PINTO0309/simple-onnx-processing-tools Key concept V

Katsuya Hyodo 6 May 15, 2022
Includes PyTorch -> Keras model porting code for ConvNeXt family of models with fine-tuning and inference notebooks.

ConvNeXt-TF This repository provides TensorFlow / Keras implementations of different ConvNeXt [1] variants. It also provides the TensorFlow / Keras mo

Sayak Paul 87 Dec 06, 2022
Quadruped-command-tracking-controller - Quadruped command tracking controller (flat terrain)

Quadruped command tracking controller (flat terrain) Prepare Install RAISIM link

Yunho Kim 4 Oct 20, 2022
JORLDY an open-source Reinforcement Learning (RL) framework provided by KakaoEnterprise

Repository for Open Source Reinforcement Learning Framework JORLDY

Kakao Enterprise Corp. 330 Dec 30, 2022
QueryFuzz implements a metamorphic testing approach to test Datalog engines.

Datalog is a popular query language with applications in several domains. Like any complex piece of software, Datalog engines may contain bugs. The mo

34 Sep 10, 2022
Source code for 2021 ICCV paper "In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces"

In-the-Wild Single Camera 3D Reconstruction Through Moving Water Surfaces This is the PyTorch implementation for 2021 ICCV paper "In-the-Wild Single C

27 Dec 06, 2022
Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide range of illumination variants of a single image.

Deep Illuminator Deep Illuminator is a data augmentation tool designed for image relighting. It can be used to easily and efficiently generate a wide

George Chogovadze 52 Nov 29, 2022
Space Time Recurrent Memory Network - Pytorch

Space Time Recurrent Memory Network - Pytorch (wip) Implementation of Space Time Recurrent Memory Network, recurrent network competitive with attentio

Phil Wang 50 Nov 07, 2021
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
《Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching》(CVPR 2020)

This contains the codes for cross-view geo-localization method described in: Where am I looking at? Joint Location and Orientation Estimation by Cross-View Matching, CVPR2020.

41 Oct 27, 2022
The codes and related files to reproduce the results for Image Similarity Challenge Track 1.

ISC-Track1-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 1. Required dependencies To begin with

Wenhao Wang 115 Jan 02, 2023
Dictionary Learning with Uniform Sparse Representations for Anomaly Detection

Dictionary Learning with Uniform Sparse Representations for Anomaly Detection Implementation of the Uniform DL Representation for AD algorithm describ

Paul Irofti 1 Nov 23, 2022