Pytorch implementation of CoCon: A Self-Supervised Approach for Controlled Text Generation

Overview

COCON_ICLR2021

This is our Pytorch implementation of COCON.

CoCon: A Self-Supervised Approach for Controlled Text Generation (ICLR 2021)
Alvin Chan, Yew-Soon Ong, Bill Pung, Aston Zhang, Jie Fu
https://arxiv.org/abs/2010.02684

TL;DR: We propose CoCon to control the content of text generation from LMs by conditioning on content inputs at an interleave layer.

Requirements

  • Python 3.7.6 on Linux
  • PyTorch 1.4

Dependencies

Install dependencies with:

pip install -r requirements.txt

Dataset

  1. Download COCON's training data from https://github.com/openai/gpt-2-output-dataset
  2. Place the medium-345M-k40.${split}.jsonl files inside the data/gpt2output/ folder

COCON Training

Train COCON with a GPT-2 language model, with the parameters reported in the paper:

sh train_cocon.sh

After training, the COCON block's weights will be saved as models/COCON/cocon_block_pytorch_model.bin.

Training Key Arguments

--do_train : whether to train COCON or not
--output_dir : directory of COCON weights
--model_name_or_path : type of language model to train COCON with
--output_hidden_for_cocon_after_block_ind : index of transformer block whose hidden states are used as input to COCON for content conditioning, value is 6 for results reported in paper, meaning that the output of GPT-2's 7th transformer block is used as COCON block's input.

Pretrained COCON weights

You can download COCON's pretrained weights here and save it in models/COCON/ to start generating with COCON.

COCON Controlled Generation

Sample script on how to generate COCON sentiment-controlled text:

sh generation/generate_cocon_sentiments.sh

Sample script on how to generate COCON topic-controlled text:

sh generation/generate_cocon_topics.sh

COCON-generated texts correspond to the cocon_output key in the output .jsonl files and Cocon AR output in the output .txt files.

Generation Key Arguments

--do_cocon_compute : whether to do COCON generation
--output_dir : directory of COCON block's weights
--model_name_or_path : type of language model
--cocon_output_filename : path of saved generation samples
--cocon_compute_history_source_data_file : filename of text file containing prompt texts for generation
--cocon_compute_context_source_data_file : filename of text file containing target content for generation

Summary of Key Folders/Files

  • transformers/: code for models and optimizers
  • transformers/modeling_gpt2.py: code for COCON block and GPT-2 language model
  • BOW/: target content tokens used for COCON topic control
  • attr_markers/: target content tokens used for COCON sentiment control
  • prompts/: prompt text used for text generation

Citation

If you find our repository useful, please consider citing our paper:

@inproceedings{
chan2021cocon,
title={CoCon: A Self-Supervised Approach for Controlled Text Generation},
author={Alvin Chan and Yew-Soon Ong and Bill Pung and Aston Zhang and Jie Fu},
booktitle={International Conference on Learning Representations},
year={2021},
url={https://openreview.net/forum?id=VD_ozqvBy4W}
}

Acknowledgements

Code is based largely on:

Owner
alvinchangw
CS PhD Student @ Nanyang Technological University, Singapore
alvinchangw
Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation"

Keyword2Text This repository contains the code of the paper: "A Plug-and-Play Method for Controlled Text Generation", if you find this useful and use

57 Dec 27, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
Out-of-boundary View Synthesis towards Full-frame Video Stabilization

Out-of-boundary View Synthesis towards Full-frame Video Stabilization Introduction | Update | Results Demo | Introduction This repository contains the

25 Oct 10, 2022
A toolkit for controlling Euro Truck Simulator 2 with python to develop self-driving algorithms.

europilot Overview Europilot is an open source project that leverages the popular Euro Truck Simulator(ETS2) to develop self-driving algorithms. A con

1.4k Jan 04, 2023
An implementation of shampoo

shampoo.pytorch An implementation of shampoo, proposed in Shampoo : Preconditioned Stochastic Tensor Optimization by Vineet Gupta, Tomer Koren and Yor

Ryuichiro Hataya 69 Sep 10, 2022
The final project of "Applying AI to 2D Medical Imaging Data" of "AI for Healthcare" nanodegree - Udacity.

Pneumonia Detection from X-Rays Project Overview In this project, you will apply the skills that you have acquired in this 2D medical imaging course t

Omar Laham 1 Jan 14, 2022
Justmagic - Use a function as a method with this mystic script, like in Nim

justmagic Use a function as a method with this mystic script, like in Nim. Just

witer33 8 Oct 08, 2022
Simple reference implementation of GraphSAGE.

Reference PyTorch GraphSAGE Implementation Author: William L. Hamilton Basic reference PyTorch implementation of GraphSAGE. This reference implementat

William L Hamilton 861 Jan 06, 2023
A platform to display the carbon neutralization information for researchers, decision-makers, and other participants in the community.

Welcome to Carbon Insight Carbon Insight is a platform aiming to display the carbon neutralization roadmap for researchers, decision-makers, and other

Microsoft 14 Oct 24, 2022
This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels].

CGPN This is the repository for the NeurIPS-21 paper [Contrastive Graph Poisson Networks: Semi-Supervised Learning with Extremely Limited Labels]. Req

10 Sep 12, 2022
PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model

samplernn-pytorch A PyTorch implementation of SampleRNN: An Unconditional End-to-End Neural Audio Generation Model. It's based on the reference implem

DeepSound 261 Dec 14, 2022
Benchmarks for Model-Based Optimization

Design-Bench Design-Bench is a benchmarking framework for solving automatic design problems that involve choosing an input that maximizes a black-box

Brandon Trabucco 43 Dec 20, 2022
Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks

Stable Neural ODE with Lyapunov-Stable Equilibrium Points for Defending Against Adversarial Attacks Stable Neural ODE with Lyapunov-Stable Equilibrium

Kang Qiyu 8 Dec 12, 2022
Autoencoders pretraining using clustering

Autoencoders pretraining using clustering

IITiS PAN 2 Dec 16, 2021
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
DLWP: Deep Learning Weather Prediction

DLWP: Deep Learning Weather Prediction DLWP is a Python project containing data-

Kushal Shingote 3 Aug 14, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
PyTorch implementation of ECCV 2020 paper "Foley Music: Learning to Generate Music from Videos "

Foley Music: Learning to Generate Music from Videos This repo holds the code for the framework presented on ECCV 2020. Foley Music: Learning to Genera

Chuang Gan 30 Nov 03, 2022
Semantic segmentation models, datasets and losses implemented in PyTorch.

Semantic Segmentation in PyTorch Semantic Segmentation in PyTorch Requirements Main Features Models Datasets Losses Learning rate schedulers Data augm

Yassine 1.3k Jan 07, 2023
The repository for freeCodeCamp's YouTube course, Algorithmic Trading in Python

Algorithmic Trading in Python This repository Course Outline Section 1: Algorithmic Trading Fundamentals What is Algorithmic Trading? The Differences

Nick McCullum 1.8k Jan 02, 2023