Sane and flexible OpenAPI 3 schema generation for Django REST framework.

Overview

drf-spectacular

build-status-image codecov pypi-version docs

Sane and flexible OpenAPI 3.0 schema generation for Django REST framework.

This project has 3 goals:
  1. Extract as much schema information from DRF as possible.
  2. Provide flexibility to make the schema usable in the real world (not only toy examples).
  3. Generate a schema that works well with the most popular client generators.

The code is a heavily modified fork of the DRF OpenAPI generator, which is/was lacking all of the below listed features.

Features
  • Serializers modelled as components. (arbitrary nesting and recursion supported)
  • @extend_schema decorator for customization of APIView, Viewsets, function-based views, and @action
    • additional parameters
    • request/response serializer override (with status codes)
    • polymorphic responses either manually with PolymorphicProxySerializer helper or via rest_polymorphic's PolymorphicSerializer)
    • ... and more customization options
  • Authentication support (DRF natives included, easily extendable)
  • Custom serializer class support (easily extendable)
  • SerializerMethodField() type via type hinting or @extend_schema_field
  • i18n support
  • Tags extraction
  • Request/response/parameter examples
  • Description extraction from docstrings
  • Sane fallbacks
  • Sane operation_id naming (based on path)
  • Schema serving with SpectacularAPIView (Redoc and Swagger-UI views are also available)
  • Optional input/output serializer component split
  • Included support for:

For more information visit the documentation.

License

Provided by T. Franzel, Cashlink Technologies GmbH. Licensed under 3-Clause BSD.

Requirements

  • Python >= 3.6
  • Django (2.2, 3.1, 3.2)
  • Django REST Framework (3.10, 3.11, 3.12)

Installation

Install using pip...

$ pip install drf-spectacular

then add drf-spectacular to installed apps in settings.py

INSTALLED_APPS = [
    # ALL YOUR APPS
    'drf_spectacular',
]

and finally register our spectacular AutoSchema with DRF.

REST_FRAMEWORK = {
    # YOUR SETTINGS
    'DEFAULT_SCHEMA_CLASS': 'drf_spectacular.openapi.AutoSchema',
}

drf-spectacular ships with sane default settings that should work reasonably well out of the box. It is not necessary to specify any settings, but we recommend to specify at least some metadata.

SPECTACULAR_SETTINGS = {
    'TITLE': 'Your Project API',
    'DESCRIPTION': 'Your project description',
    'VERSION': '1.0.0',
    # OTHER SETTINGS
}

Release management

drf-spectacular deliberately stays below version 1.x.x to signal that every new version may potentially break you. For production we strongly recommend pinning the version and inspecting a schema diff on update.

With that said, we aim to be extremely defensive w.r.t. breaking API changes. However, we also acknowledge the fact that even slight schema changes may break your toolchain, as any existing bug may somehow also be used as a feature.

We define version increments with the following semantics. y-stream increments may contain potentially breaking changes to both API and schema. z-stream increments will never break the API and may only contain schema changes that should have a low chance of breaking you.

Take it for a spin

Generate your schema with the CLI:

$ ./manage.py spectacular --file schema.yml
$ docker run -p 80:8080 -e SWAGGER_JSON=/schema.yml -v ${PWD}/schema.yml:/schema.yml swaggerapi/swagger-ui

If you also want to validate your schema add the --validate flag. Or serve your schema directly from your API. We also provide convenience wrappers for swagger-ui or redoc.

from drf_spectacular.views import SpectacularAPIView, SpectacularRedocView, SpectacularSwaggerView
urlpatterns = [
    # YOUR PATTERNS
    path('api/schema/', SpectacularAPIView.as_view(), name='schema'),
    # Optional UI:
    path('api/schema/swagger-ui/', SpectacularSwaggerView.as_view(url_name='schema'), name='swagger-ui'),
    path('api/schema/redoc/', SpectacularRedocView.as_view(url_name='schema'), name='redoc'),
]

Usage

drf-spectacular works pretty well out of the box. You might also want to set some metadata for your API. Just create a SPECTACULAR_SETTINGS dictionary in your settings.py and override the defaults. Have a look at the available settings.

The toy examples do not cover your cases? No problem, you can heavily customize how your schema will be rendered.

Customization by using @extend_schema

Most customization cases should be covered by the extend_schema decorator. We usually get pretty far with specifying OpenApiParameter and splitting request/response serializers, but the sky is the limit.

from drf_spectacular.utils import extend_schema, OpenApiParameter, OpenApiExample
from drf_spectacular.types import OpenApiTypes

class AlbumViewset(viewset.ModelViewset)
    serializer_class = AlbumSerializer

    @extend_schema(
        request=AlbumCreationSerializer
        responses={201: AlbumSerializer},
    )
    def create(self, request):
        # your non-standard behaviour
        return super().create(request)

    @extend_schema(
        # extra parameters added to the schema
        parameters=[
            OpenApiParameter(name='artist', description='Filter by artist', required=False, type=str),
            OpenApiParameter(
                name='release',
                type=OpenApiTypes.DATE,
                location=OpenApiParameter.QUERY,
                description='Filter by release date',
                examples=[
                    OpenApiExample(
                        'Example 1',
                        summary='short optional summary',
                        description='longer description',
                        value='1993-08-23'
                    ),
                    ...
                ],
            ),
        ],
        # override default docstring extraction
        description='More descriptive text',
        # provide Authentication class that deviates from the views default
        auth=None,
        # change the auto-generated operation name
        operation_id=None,
        # or even completely override what AutoSchema would generate. Provide raw Open API spec as Dict.
        operation=None,
        # attach request/response examples to the operation.
        examples=[
            OpenApiExample(
                'Example 1',
                description='longer description',
                value=...
            ),
            ...
        ],
    )
    def list(self, request):
        # your non-standard behaviour
        return super().list(request)

    @extend_schema(
        request=AlbumLikeSerializer
        responses={204: None},
        methods=["POST"]
    )
    @extend_schema(description='Override a specific method', methods=["GET"])
    @action(detail=True, methods=['post', 'get'])
    def set_password(self, request, pk=None):
        # your action behaviour

More customization

Still not satisifed? You want more! We still got you covered. Visit customization for more information.

Testing

Install testing requirements.

$ pip install -r requirements.txt

Run with runtests.

$ ./runtests.py

You can also use the excellent tox testing tool to run the tests against all supported versions of Python and Django. Install tox globally, and then simply run:

$ tox
Owner
T. Franzel
T. Franzel
Feature Store for Machine Learning

Overview Feast is an open source feature store for machine learning. Feast is the fastest path to productionizing analytic data for model training and

Feast 3.8k Dec 30, 2022
DeltaPy - Tabular Data Augmentation (by @firmai)

DeltaPy⁠⁠ — Tabular Data Augmentation & Feature Engineering Finance Quant Machine Learning ML-Quant.com - Automated Research Repository Introduction T

Derek Snow 470 Dec 28, 2022
LotteryBuyPredictionWebApp - Lottery Purchase Prediction Model

Lottery Purchase Prediction Model Objective and Goal Predict the lottery type th

Wanxuan Zhang 2 Feb 14, 2022
Anomaly Detection via Reverse Distillation from One-Class Embedding

Anomaly Detection via Reverse Distillation from One-Class Embedding Implementation (Official Code ⭐️ ⭐️ ⭐️ ) Environment pytorch == 1.91 torchvision =

73 Dec 19, 2022
Automated generation of real Swagger/OpenAPI 2.0 schemas from Django REST Framework code.

drf-yasg - Yet another Swagger generator Generate real Swagger/OpenAPI 2.0 specifications from a Django Rest Framework API. Compatible with Django Res

Cristi Vîjdea 3k Dec 31, 2022
FxBuzzly - Buzzly.art links do not embed in Discord, this fixes them (rudimentarily)

fxBuzzly Buzzly.art links do not embed in Discord, this fixes them (rudimentaril

Dania Rifki 2 Oct 27, 2022
Ultimaker Cura 2 Mooraker Upload Plugin

Klipper & Cura - Cura2MoonrakerPlugin Allows you to upload Gcode directly from Cura to your Klipper-based 3D printer (Fluidd, Mainsailos etc.) using t

214 Jan 03, 2023
Some code that takes a pipe-separated input and converts that into a table!

tablemaker A program that takes an input: a | b | c # With comments as well. e | f | g h | i |jk And converts it to a table: ┌───┬───┬────┐ │ a │ b │

CodingSoda 2 Aug 30, 2022
A set of Python libraries that assist in calling the SoftLayer API.

SoftLayer API Python Client This library provides a simple Python client to interact with SoftLayer's XML-RPC API. A command-line interface is also in

SoftLayer 155 Sep 20, 2022
🧙 A simple, typed and monad-based Result type for Python.

meiga 🧙 A simple, typed and monad-based Result type for Python. Table of Contents Installation 💻 Getting Started 📈 Example Features Result Function

Alice Biometrics 31 Jan 08, 2023
Materi workshop "Light up your Python!" Himpunan Mahasiswa Sistem Informasi Fakultas Ilmu Komputer Universitas Singaperbangsa Karawang, 4 September 2021 (Online via Zoom).

Workshop Python UNSIKA 2021 Materi workshop "Light up your Python!" Himpunan Mahasiswa Sistem Informasi Fakultas Ilmu Komputer Universitas Singaperban

Eka Putra 20 Mar 24, 2022
Plugins for MkDocs.

Plugins for MkDocs and Python Markdown pip install neoteroi-mkdocs This package includes the following plugins and extensions: Name Description Type m

35 Dec 23, 2022
Documentation and issues for Pylance - Fast, feature-rich language support for Python

Documentation and issues for Pylance - Fast, feature-rich language support for Python

Microsoft 1.5k Dec 29, 2022
Cleaner script to normalize knock's output EPUBs

clean-epub The excellent knock application by Benton Edmondson outputs EPUBs that seem to be DRM-free. However, if you run the application twice on th

2 Dec 16, 2022
Generate a backend and frontend stack using Python and json-ld, including interactive API documentation.

d4 - Base Project Generator Generate a backend and frontend stack using Python and json-ld, including interactive API documentation. d4? What is d4 fo

Markus Leist 3 May 03, 2022
Read write method - Read files in various types of formats

一个关于所有格式文件读取的方法 1。 问题描述: 各种各样的文件格式,读写操作非常的麻烦,能够有一种方法,可以整合所有格式的文件,方便用户进行读取和写入。 2

2 Jan 26, 2022
Pydantic model generator for easy conversion of JSON, OpenAPI, JSON Schema, and YAML data sources.

datamodel-code-generator This code generator creates pydantic model from an openapi file and others. Help See documentation for more details. Supporte

Koudai Aono 1.3k Dec 29, 2022
A document format conversion service based on Pandoc.

reformed Document format conversion service based on Pandoc. Usage The API specification for the Reformed server is as follows: GET /api/v1/formats: L

David Lougheed 3 Jul 18, 2022
This is the data scrapped of all the pitches made up potential startup's to established bussiness tycoons of India with all the details of Investments made, equity share, Name of investor etc.

SharkTankInvestor This is the data scrapped of all the pitches made up potential startup's to established bussiness tycoons of India with all the deta

Subradip Poddar 2 Aug 02, 2022
A curated list of python programming language blogs

Python Blogs A curated list of python programming language blogs Contribute Companies/Organization # A B C D E F G H I J K L M N O P Q R S T U V W X Y

Rizky D. Onto 48 Nov 15, 2022