Autonomous Perception: 3D Object Detection with Complex-YOLO

Overview

Autonomous Perception: 3D Object Detection with Complex-YOLO

Gif of 50 frames of darknet

LiDAR object detection with Complex-YOLO takes four steps:

  1. Computing LiDAR point-clouds from range images.
  2. Transforming the point-cloud to a Bird's Eye View using the Point Cloud Library (PCL).
  3. Using both Complex-YOLO Darknet and Resnet to predict 3D dectections on transformed LiDAR images.
  4. Evaluating the detections based Precision and Recall.

Complex-Yolo Pipeline

Complex-Yolo is both highly accurate and highly performant in production:

Complex-Yolo Performance

Computing LiDAR Point-Clouds from Waymo Range Images

Waymo uses multiple sensors including LiDAR, cameras, radar for autonomous perception. Even microphones are used to help detect ambulance and police sirens.

Visualizing LiDAR Range and Intensity Channels

LiDAR visualization 1

Roof-mounted "Top" LiDAR rotates 360 degrees with a vertical field of vision or ~20 degrees (-17.6 degrees to +2.4 degrees) with a 75m limit in the dataset.

LiDAR data is stored as a range image in the Waymo Open Dataset. Using OpenCV and NumPy, we filtered the "range" and "intensity" channels from the image, and converted the float data to 8-bit unsigned integers. Below is a visualization of two video frames, where the top half is the range channel, and the bottom half is the intensity for each visualization:

LiDAR visualization 2

Visualizing th LiDAR Point-cloud

There are 64 LEDs in Waymo's top LiDAR sensor. Limitations of 360 LiDAR include the space between beams (aka resolution) widening with distance from the origin. Also the car chasis will create blind spots, creating the need for Perimeter LiDAR sensors to be inlcuded on the sides of the vehicles.

We leveraged the Open3D library to make a 3D interactive visualization of the LiDAR point-cloud. Commonly visible features are windshields, tires, and mirros within 40m. Beyond 40m, cars are like slightly rounded rectangles where you might be able to make ou the windshield. Further away vehicles and extremely close vehicles typically have lower resolution, as well as vehicles obstructing the detection of other vehicles.

10 Vehicles Showing Different Types of LiDAR Interaction:

  1. Truck with trailer - most of truck is high resolution visible, but part of the trailer is in the 360 LiDAR's blind-spot.
  2. Car partial in blind spot, back-half isn't picked up well. This car blocks the larges area behind it from being detected by the LiDAR.
  3. Car shape is higly visible, where you can even see the side-mirrors and the LiDAR passing through the windshield.
  4. Car driving in other lane. You can see the resolution of the car being lower because the further away the 64 LEDs project the lasers, the futher apart the points of the cloud will be. It is also obstructed from some lasers by Car 2.
  5. This parked is unobstructed, but far enough away where it's difficult to make our the mirrors or the tires.
  6. Comparing this car to Car 3, you can see where most of the definition is either there or slightly worse, because it is further way.
  7. Car 7 is both far away and obstructed, so you can barely tell it's a car. It's basically a box with probably a windshield.
  8. Car 8 is similar to Car 6 on the right side, but obstructed by Car 6 on the left side.
  9. Car 9 is at the limit of the LiDAR's dataset's perception. It's hard to tell it's a car.
  10. Car 10 is at the limit of the LiDAR's perception, and is also obstructed by car 8.

Transforming the point-cloud to a Bird's Eye View using the Point Cloud Library

Convert sensor coordinates to Bird's-Eye View map coordinates

The birds-eye view (BEV) of a LiDAR point-cloud is based on the transformation of the x and y coordinates of the points.

BEV map properties:

  • Height:

    H_{i,j} = max(P_{i,j} \cdot [0,0,1]T)

  • Intensity:

    I_{i,j} = max(I(P_{i,j}))

  • Density:

    D_{i,j} = min(1.0,\ \frac{log(N+1)}{64})

P_{i,j} is the set of points that falls into each cell, with i,j as the respective cell coordinates. N_{i,j} refers to the number of points in a cell.

Compute intensity layer of the BEV map

We created a BEV map of the "intensity" channel from the point-cloud data. We identified the top-most (max height) point with the same (x,y)-coordinates from the point-cloud, and assign the intensity value to the corresponding BEV map point. The data was normalized and outliers were removed until the features of interest were clearly visible.

Compute height layer of the BEV map

This is a visualization of the "height" channel BEV map. We sorted and pruned point-cloud data, normalizing the height in each BEV map pixel by the difference between max. and min.

Model-based Object Detection in BEV Image

We used YOLO3 and Resnet deep-learning models to doe 3D Object Detection. Complex-YOLO: Real-time 3D Object Detection on Point Clouds and Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point Clouds.

Extract 3D bounding boxes from model response

The models take a three-channel BEV map as an input, and predict the class about coordinates of objects (vehicles). We then transformed these BEV coordinates back to the vehicle coordinate-space to draw the bounding boxes in both images.

Transforming back to vehicle space

Below is a gif the of detections in action: Results from 50 frames of resnet detection

Performance Evaluation for Object Detection

Compute intersection-over-union between labels and detections

Based on the labels within the Waymo Open Dataset, your task is to compute the geometrical overlap between the bounding boxes of labels and detected objects and determine the percentage of this overlap in relation to the area of the bounding boxes. A default method in the literature to arrive at this value is called intersection over union, which is what you will need to implement in this task.

After detections are made, we need a set of metrics to measure our progress. Common classification metrics for object detection include:

TP, FN, FP

  • TP: True Positive - Predicts vehicle or other object is there correctly
  • TN: True Negative - Correctly predicts vehicle or object is not present
  • FP: False Positive - Dectects object class incorrectly
  • FN: False Negative - Didn't detect object class when there should be a dectection

One popular method of making these determinations is measuring the geometric overlap of bounding boxes vs the total area two predicted bounding boxes take up in an image, or th Intersecion over Union (IoU).

IoU formula

IoU for Complex-Yolo

Classification Metrics Based on Precision and Recall

After all the LiDAR and Camera data has been transformed, and the detections have been predicted, we calculate the following metrics for the bounding box predictions:

Formulas

  • Precision:

    \frac{TP}{TP + FP}

  • Recall:

    \frac{TP}{TP + FN}

  • Accuracy:

    \frac{TP + TN}{TP + TN + FP + FN}

  • Mean Average Precision:

    \frac{1}{n} \sum_{Recall_{i}}Precision(Recall_{i})

Precision and Recall Results Visualizations

Results from 50 frames: Results from 50 frames

Precision: .954 Recall: .921

Complex Yolo Paper

Owner
Thomas Dunlap
Machine Learning Engineer and Data Scientist with a focus on deep learning, computer vision, and robotics.
Thomas Dunlap
Model Serving Made Easy

The easiest way to build Machine Learning APIs BentoML makes moving trained ML models to production easy: Package models trained with any ML framework

BentoML 4.4k Jan 08, 2023
Evaluation Pipeline for our ECCV2020: Journey Towards Tiny Perceptual Super-Resolution.

Journey Towards Tiny Perceptual Super-Resolution Test code for our ECCV2020 paper: https://arxiv.org/abs/2007.04356 Our x4 upscaling pre-trained model

Royson 6 Mar 30, 2022
U-Net Brain Tumor Segmentation

U-Net Brain Tumor Segmentation 🚀 :Feb 2019 the data processing implementation in this repo is not the fastest way (code need update, contribution is

Hao 448 Jan 02, 2023
Rainbow DQN implementation that outperforms the paper's results on 40% of games using 20x less data 🌈

Rainbow 🌈 An implementation of Rainbow DQN which outperforms the paper's (Hessel et al. 2017) results on 40% of tested games while using 20x less dat

Dominik Schmidt 31 Dec 21, 2022
Research code for the paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual Language Models"

Introduction This repository contains research code for the ACL 2021 paper "How Good is Your Tokenizer? On the Monolingual Performance of Multilingual

AdapterHub 20 Aug 04, 2022
DrQ-v2: Improved Data-Augmented Reinforcement Learning

DrQ-v2: Improved Data-Augmented RL Agent Method DrQ-v2 is a model-free off-policy algorithm for image-based continuous control. DrQ-v2 builds on DrQ,

Facebook Research 234 Jan 01, 2023
Patches desktop steam to look like the new steamdeck ui.

steam_deck_ui_patch The Deck UI patch will patch the regular desktop steam to look like the brand new SteamDeck UI. This patch tool currently works on

The_IT_Dude 3 Aug 29, 2022
Data Augmentation with Variational Autoencoders

Documentation Pyraug This library provides a way to perform Data Augmentation using Variational Autoencoders in a reliable way even in challenging con

112 Nov 30, 2022
Interactive dimensionality reduction for large datasets

BlosSOM 🌼 BlosSOM is a graphical environment for running semi-supervised dimensionality reduction with EmbedSOM. You can use it to explore multidimen

19 Dec 14, 2022
Code for Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021)

Parameter Prediction for Unseen Deep Architectures (NeurIPS 2021) authors: Boris Knyazev, Michal Drozdzal, Graham Taylor, Adriana Romero-Soriano Overv

Facebook Research 462 Jan 03, 2023
Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors

-IEEE-TIM-2021-1-Shallow-CNN-for-HAR [IEEE TIM 2021-1] Shallow Convolutional Neural Networks for Human Activity Recognition using Wearable Sensors All

Wenbo Huang 1 May 17, 2022
Training and Evaluation Code for Neural Volumes

Neural Volumes This repository contains training and evaluation code for the paper Neural Volumes. The method learns a 3D volumetric representation of

Meta Research 370 Dec 08, 2022
PyTorch implementation for Graph Contrastive Learning with Augmentations

Graph Contrastive Learning with Augmentations PyTorch implementation for Graph Contrastive Learning with Augmentations [poster] [appendix] Yuning You*

Shen Lab at Texas A&M University 382 Dec 15, 2022
This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset

HiRID-ICU-Benchmark This repository contains the needed resources to build the HIRID-ICU-Benchmark dataset for which the manuscript can be found here.

Biomedical Informatics at ETH Zurich 30 Dec 16, 2022
Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback

Graph-Refined Convolutional Network for Multimedia Recommendation with Implicit Feedback This is our Pytorch implementation for the paper: Yinwei Wei,

17 Jun 10, 2022
Painting app using Python machine learning and vision technology.

AI Painting App We are making an app that will track our hand and helps us to draw from that. We will be using the advance knowledge of Machine Learni

Badsha Laskar 3 Oct 03, 2022
Vector AI — A platform for building vector based applications. Encode, query and analyse data using vectors.

Vector AI is a framework designed to make the process of building production grade vector based applications as quickly and easily as possible. Create

Vector AI 267 Dec 23, 2022
A simple code to perform canny edge contrast detection on images.

CECED-Canny-Edge-Contrast-Enhanced-Detection A simple code to perform canny edge contrast detection on images. A simple code to process images using c

Happy N. Monday 3 Feb 15, 2022
PyTorch Implementation of "Non-Autoregressive Neural Machine Translation"

Non-Autoregressive Transformer Code release for Non-Autoregressive Neural Machine Translation by Jiatao Gu, James Bradbury, Caiming Xiong, Victor O.K.

Salesforce 261 Nov 12, 2022
New approach to benchmark VQA models

VQA Benchmarking This repository contains the web application & the python interface to evaluate VQA models. Documentation Please see the documentatio

4 Jul 25, 2022