Autonomous Perception: 3D Object Detection with Complex-YOLO

Overview

Autonomous Perception: 3D Object Detection with Complex-YOLO

Gif of 50 frames of darknet

LiDAR object detection with Complex-YOLO takes four steps:

  1. Computing LiDAR point-clouds from range images.
  2. Transforming the point-cloud to a Bird's Eye View using the Point Cloud Library (PCL).
  3. Using both Complex-YOLO Darknet and Resnet to predict 3D dectections on transformed LiDAR images.
  4. Evaluating the detections based Precision and Recall.

Complex-Yolo Pipeline

Complex-Yolo is both highly accurate and highly performant in production:

Complex-Yolo Performance

Computing LiDAR Point-Clouds from Waymo Range Images

Waymo uses multiple sensors including LiDAR, cameras, radar for autonomous perception. Even microphones are used to help detect ambulance and police sirens.

Visualizing LiDAR Range and Intensity Channels

LiDAR visualization 1

Roof-mounted "Top" LiDAR rotates 360 degrees with a vertical field of vision or ~20 degrees (-17.6 degrees to +2.4 degrees) with a 75m limit in the dataset.

LiDAR data is stored as a range image in the Waymo Open Dataset. Using OpenCV and NumPy, we filtered the "range" and "intensity" channels from the image, and converted the float data to 8-bit unsigned integers. Below is a visualization of two video frames, where the top half is the range channel, and the bottom half is the intensity for each visualization:

LiDAR visualization 2

Visualizing th LiDAR Point-cloud

There are 64 LEDs in Waymo's top LiDAR sensor. Limitations of 360 LiDAR include the space between beams (aka resolution) widening with distance from the origin. Also the car chasis will create blind spots, creating the need for Perimeter LiDAR sensors to be inlcuded on the sides of the vehicles.

We leveraged the Open3D library to make a 3D interactive visualization of the LiDAR point-cloud. Commonly visible features are windshields, tires, and mirros within 40m. Beyond 40m, cars are like slightly rounded rectangles where you might be able to make ou the windshield. Further away vehicles and extremely close vehicles typically have lower resolution, as well as vehicles obstructing the detection of other vehicles.

10 Vehicles Showing Different Types of LiDAR Interaction:

  1. Truck with trailer - most of truck is high resolution visible, but part of the trailer is in the 360 LiDAR's blind-spot.
  2. Car partial in blind spot, back-half isn't picked up well. This car blocks the larges area behind it from being detected by the LiDAR.
  3. Car shape is higly visible, where you can even see the side-mirrors and the LiDAR passing through the windshield.
  4. Car driving in other lane. You can see the resolution of the car being lower because the further away the 64 LEDs project the lasers, the futher apart the points of the cloud will be. It is also obstructed from some lasers by Car 2.
  5. This parked is unobstructed, but far enough away where it's difficult to make our the mirrors or the tires.
  6. Comparing this car to Car 3, you can see where most of the definition is either there or slightly worse, because it is further way.
  7. Car 7 is both far away and obstructed, so you can barely tell it's a car. It's basically a box with probably a windshield.
  8. Car 8 is similar to Car 6 on the right side, but obstructed by Car 6 on the left side.
  9. Car 9 is at the limit of the LiDAR's dataset's perception. It's hard to tell it's a car.
  10. Car 10 is at the limit of the LiDAR's perception, and is also obstructed by car 8.

Transforming the point-cloud to a Bird's Eye View using the Point Cloud Library

Convert sensor coordinates to Bird's-Eye View map coordinates

The birds-eye view (BEV) of a LiDAR point-cloud is based on the transformation of the x and y coordinates of the points.

BEV map properties:

  • Height:

    H_{i,j} = max(P_{i,j} \cdot [0,0,1]T)

  • Intensity:

    I_{i,j} = max(I(P_{i,j}))

  • Density:

    D_{i,j} = min(1.0,\ \frac{log(N+1)}{64})

P_{i,j} is the set of points that falls into each cell, with i,j as the respective cell coordinates. N_{i,j} refers to the number of points in a cell.

Compute intensity layer of the BEV map

We created a BEV map of the "intensity" channel from the point-cloud data. We identified the top-most (max height) point with the same (x,y)-coordinates from the point-cloud, and assign the intensity value to the corresponding BEV map point. The data was normalized and outliers were removed until the features of interest were clearly visible.

Compute height layer of the BEV map

This is a visualization of the "height" channel BEV map. We sorted and pruned point-cloud data, normalizing the height in each BEV map pixel by the difference between max. and min.

Model-based Object Detection in BEV Image

We used YOLO3 and Resnet deep-learning models to doe 3D Object Detection. Complex-YOLO: Real-time 3D Object Detection on Point Clouds and Super Fast and Accurate 3D Object Detection based on 3D LiDAR Point Clouds.

Extract 3D bounding boxes from model response

The models take a three-channel BEV map as an input, and predict the class about coordinates of objects (vehicles). We then transformed these BEV coordinates back to the vehicle coordinate-space to draw the bounding boxes in both images.

Transforming back to vehicle space

Below is a gif the of detections in action: Results from 50 frames of resnet detection

Performance Evaluation for Object Detection

Compute intersection-over-union between labels and detections

Based on the labels within the Waymo Open Dataset, your task is to compute the geometrical overlap between the bounding boxes of labels and detected objects and determine the percentage of this overlap in relation to the area of the bounding boxes. A default method in the literature to arrive at this value is called intersection over union, which is what you will need to implement in this task.

After detections are made, we need a set of metrics to measure our progress. Common classification metrics for object detection include:

TP, FN, FP

  • TP: True Positive - Predicts vehicle or other object is there correctly
  • TN: True Negative - Correctly predicts vehicle or object is not present
  • FP: False Positive - Dectects object class incorrectly
  • FN: False Negative - Didn't detect object class when there should be a dectection

One popular method of making these determinations is measuring the geometric overlap of bounding boxes vs the total area two predicted bounding boxes take up in an image, or th Intersecion over Union (IoU).

IoU formula

IoU for Complex-Yolo

Classification Metrics Based on Precision and Recall

After all the LiDAR and Camera data has been transformed, and the detections have been predicted, we calculate the following metrics for the bounding box predictions:

Formulas

  • Precision:

    \frac{TP}{TP + FP}

  • Recall:

    \frac{TP}{TP + FN}

  • Accuracy:

    \frac{TP + TN}{TP + TN + FP + FN}

  • Mean Average Precision:

    \frac{1}{n} \sum_{Recall_{i}}Precision(Recall_{i})

Precision and Recall Results Visualizations

Results from 50 frames: Results from 50 frames

Precision: .954 Recall: .921

Complex Yolo Paper

Owner
Thomas Dunlap
Machine Learning Engineer and Data Scientist with a focus on deep learning, computer vision, and robotics.
Thomas Dunlap
Official implementation for Multi-Modal Interaction Graph Convolutional Network for Temporal Language Localization in Videos

Multi-modal Interaction Graph Convolutioal Network for Temporal Language Localization in Videos Official implementation for Multi-Modal Interaction Gr

Zongmeng Zhang 15 Oct 18, 2022
Flexible time series feature extraction & processing

tsflex is a toolkit for flexible time series processing & feature extraction, that is efficient and makes few assumptions about sequence data. Useful

PreDiCT.IDLab 206 Dec 28, 2022
Experiments with the Robust Binary Interval Search (RBIS) algorithm, a Query-Based prediction algorithm for the Online Search problem.

OnlineSearchRBIS Online Search with Best-Price and Query-Based Predictions This is the implementation of the Robust Binary Interval Search (RBIS) algo

S. K. 1 Apr 16, 2022
Object Tracking and Detection Using OpenCV

Object tracking is one such application of computer vision where an object is detected in a video, otherwise interpreted as a set of frames, and the object’s trajectory is estimated. For instance, yo

Happy N. Monday 4 Aug 21, 2022
A semismooth Newton method for elliptic PDE-constrained optimization

sNewton4PDEOpt The Python module implements a semismooth Newton method for solving finite-element discretizations of the strongly convex, linear ellip

2 Dec 08, 2022
Norm-based Analysis of Transformer

Norm-based Analysis of Transformer Implementations for 2 papers introducing to analyze Transformers using vector norms: Kobayashi+'20 Attention is Not

Goro Kobayashi 52 Dec 05, 2022
Implementation of Uformer, Attention-based Unet, in Pytorch

Uformer - Pytorch Implementation of Uformer, Attention-based Unet, in Pytorch. It will only offer the concat-cross-skip connection. This repository wi

Phil Wang 72 Dec 19, 2022
Official page of Patchwork (RA-L'21 w/ IROS'21)

Patchwork Official page of "Patchwork: Concentric Zone-based Region-wise Ground Segmentation with Ground Likelihood Estimation Using a 3D LiDAR Sensor

Hyungtae Lim 254 Jan 05, 2023
Plover-tapey-tape: an alternative to Plover’s built-in paper tape

plover-tapey-tape plover-tapey-tape is an alternative to Plover’s built-in paper

7 May 29, 2022
Source code for Fixed-Point GAN for Cloud Detection

FCD: Fixed-Point GAN for Cloud Detection PyTorch source code of Nyborg & Assent (2020). Abstract The detection of clouds in satellite images is an ess

Joachim Nyborg 8 Dec 22, 2022
Method for facial emotion recognition compitition of Xunfei and Datawhale .

人脸情绪识别挑战赛-第3名-W03KFgNOc-源代码、模型以及说明文档 队名:W03KFgNOc 排名:3 正确率: 0.75564 队员:yyMoming,xkwang,RichardoMu。 比赛链接:人脸情绪识别挑战赛 文章地址:link emotion 该项目分别训练八个模型并生成csv文

6 Oct 17, 2022
PyTorch Implement for Path Attention Graph Network

SPAGAN in PyTorch This is a PyTorch implementation of the paper "SPAGAN: Shortest Path Graph Attention Network" Prerequisites We prefer to create a ne

Yang Yiding 38 Dec 28, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
This is a collection of simple PyTorch implementations of neural networks and related algorithms. These implementations are documented with explanations,

labml.ai Deep Learning Paper Implementations This is a collection of simple PyTorch implementations of neural networks and related algorithms. These i

labml.ai 16.4k Jan 09, 2023
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Conformer: Local Features Coupling Global Representations for Visual Recognition

Conformer: Local Features Coupling Global Representations for Visual Recognition (arxiv) This repository is built upon DeiT and timm Usage First, inst

Zhiliang Peng 378 Jan 08, 2023
This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices.

GBW This repo implements several applications of the proposed generalized Bures-Wasserstein (GBW) geometry on symmetric positive definite matrices. Ap

Andi Han 0 Oct 22, 2021
InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing

InsTrim The paper: InsTrim: Lightweight Instrumentation for Coverage-guided Fuzzing Build Prerequisite llvm-8.0-dev clang-8.0 cmake = 3.2 Make git cl

75 Dec 23, 2022
Code for Environment Inference for Invariant Learning (ICML 2020 UDL Workshop Paper)

Environment Inference for Invariant Learning This code accompanies the paper Environment Inference for Invariant Learning, which appears at ICML 2021.

Elliot Creager 40 Dec 09, 2022
A modular, primitive-first, python-first PyTorch library for Reinforcement Learning.

TorchRL Disclaimer This library is not officially released yet and is subject to change. The features are available before an official release so that

Meta Research 860 Jan 07, 2023