TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Overview

TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Authors: Yixuan Su, Fangyu Liu, Zaiqiao Meng, Lei Shu, Ehsan Shareghi, and Nigel Collier

Code of our paper: TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning

Introduction:

Masked language models (MLMs) such as BERT and RoBERTa have revolutionized the field of Natural Language Understanding in the past few years. However, existing pre-trained MLMs often output an anisotropic distribution of token representations that occupies a narrow subset of the entire representation space. Such token representations are not ideal, especially for tasks that demand discriminative semantic meanings of distinct tokens. In this work, we propose TaCL (Token-aware Contrastive Learning), a novel continual pre-training approach that encourages BERT to learn an isotropic and discriminative distribution of token representations. TaCL is fully unsupervised and requires no additional data. We extensively test our approach on a wide range of English and Chinese benchmarks. The results show that TaCL brings consistent and notable improvements over the original BERT model. Furthermore, we conduct detailed analysis to reveal the merits and inner-workings of our approach

Main Results:

We show the comparison between TaCL (base version) and the original BERT (base version).

(1) English benchmark results on SQuAD (Rajpurkar et al., 2018) (dev set) and GLUE (Wang et al., 2019) average score.

Model SQuAD 1.1 (EM/F1) SQuAD 2.0 (EM/F1) GLUE Average
BERT 80.8/88.5 73.4/76.8 79.6
TaCL 81.6/89.0 74.4/77.5 81.2

(2) Chinese benchmark results (test set F1) on four NER tasks (MSRA, OntoNotes, Resume, and Weibo) and three Chinese word segmentation (CWS) tasks (PKU, CityU, and AS).

Model MSRA OntoNotes Resume Weibo PKU CityU AS
BERT 94.95 80.14 95.53 68.20 96.50 97.60 96.50
TaCL 95.44 82.42 96.45 69.54 96.75 98.16 96.75

Huggingface Models:

Model Name Model Address
English (cambridgeltl/tacl-bert-base-uncased) link
Chinese (cambridgeltl/tacl-bert-base-chinese) link

Example Usage:

import torch
# initialize model
from transformers import AutoModel, AutoTokenizer
model_name = 'cambridgeltl/tacl-bert-base-uncased'
model = AutoModel.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
# create input ids
text = '[CLS] clbert is awesome. [SEP]'
tokenized_token_list = tokenizer.tokenize(text)
input_ids = torch.LongTensor(tokenizer.convert_tokens_to_ids(tokenized_token_list)).view(1, -1)
# compute hidden states
representation = model(input_ids).last_hidden_state # [1, seqlen, embed_dim]

Tutorial (in Chinese language) on how to use Chinese TaCL BERT to performance Name Entity Recognition and Chinese word segmentation:

Tutorial link

Tutorial on how to reproduce the results in our paper:

1. Environment Setup:

python version: 3.8
pip3 install -r requirements.txt

2. Train TaCL:

(1) Prepare pre-training data:

Please refer to details provided in ./pretraining_data directory.

(2) Train the model:

Please refer to details provided in ./pretraining directory.

3. Experiments on English Benchmarks:

Please refer to details provided in ./english_benchmark directory.

4. Experiments on Chinese Benchmarks:

(1) Chinese Benchmark Data Preparation:

chmod +x ./download_benchmark_data.sh
./download_benchmark_data.sh

(2) Fine-tuning and Inference:

Please refer to details provided in ./chinese_benchmark directory.

5. Replicate Our Analysis Results:

We provide all essential code to replicate the results (the images below) provided in our analysis section. The related codes and instructions are located in ./analysis directory. Have fun!

Citation:

If you find our paper and resources useful, please kindly cite our paper:

@misc{su2021tacl,
      title={TaCL: Improving BERT Pre-training with Token-aware Contrastive Learning}, 
      author={Yixuan Su and Fangyu Liu and Zaiqiao Meng and Lei Shu and Ehsan Shareghi and Nigel Collier},
      year={2021},
      eprint={2111.04198},
      archivePrefix={arXiv},
      primaryClass={cs.CL}
}

Contact

If you have any questions, feel free to contact me via ([email protected]).

Owner
Yixuan Su
I am a final-year PhD student at the University of Cambridge, supervised by Professor Nigel Collier.
Yixuan Su
Tensorflow port of a full NetVLAD network

netvlad_tf The main intention of this repo is deployment of a full NetVLAD network, which was originally implemented in Matlab, in Python. We provide

Robotics and Perception Group 225 Nov 08, 2022
Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative Adversarial Neural Networks

ForecastingNonverbalSignals This is the implementation for the paper Forecasting Nonverbal Social Signals during Dyadic Interactions with Generative A

1 Feb 10, 2022
Bringing Computer Vision and Flutter together , to build an awesome app !!

Bringing Computer Vision and Flutter together , to build an awesome app !! Explore the Directories Flutter · Machine Learning Table of Contents About

Padmanabha Banerjee 14 Apr 07, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Sound and Cost-effective Fuzzing of Stripped Binaries by Incremental and Stochastic Rewriting

StochFuzz: A New Solution for Binary-only Fuzzing StochFuzz is a (probabilistically) sound and cost-effective fuzzing technique for stripped binaries.

Zhuo Zhang 164 Dec 05, 2022
Time Series Cross-Validation -- an extension for scikit-learn

TSCV: Time Series Cross-Validation This repository is a scikit-learn extension for time series cross-validation. It introduces gaps between the traini

Wenjie Zheng 222 Jan 01, 2023
MINOS: Multimodal Indoor Simulator

MINOS Simulator MINOS is a simulator designed to support the development of multisensory models for goal-directed navigation in complex indoor environ

194 Dec 27, 2022
[NeurIPS 2021] Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods

Large Scale Learning on Non-Homophilous Graphs: New Benchmarks and Strong Simple Methods Large Scale Learning on Non-Homophilous Graphs: New Benchmark

60 Jan 03, 2023
Torch implementation of various types of GAN (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN, LSGAN)

gans-collection.torch Torch implementation of various types of GANs (e.g. DCGAN, ALI, Context-encoder, DiscoGAN, CycleGAN, EBGAN). Note that EBGAN and

Minchul Shin 53 Jan 22, 2022
Code release for NeurIPS 2020 paper "Co-Tuning for Transfer Learning"

CoTuning Official implementation for NeurIPS 2020 paper Co-Tuning for Transfer Learning. [News] 2021/01/13 The COCO 70 dataset used in the paper is av

THUML @ Tsinghua University 35 Sep 23, 2022
A method to perform unsupervised cross-region adaptation of crop classifiers trained with satellite image time series.

TimeMatch Official source code of TimeMatch: Unsupervised Cross-region Adaptation by Temporal Shift Estimation by Joachim Nyborg, Charlotte Pelletier,

Joachim Nyborg 17 Nov 01, 2022
The GitHub repository for the paper: “Time Series is a Special Sequence: Forecasting with Sample Convolution and Interaction“.

SCINet This is the original PyTorch implementation of the following work: Time Series is a Special Sequence: Forecasting with Sample Convolution and I

386 Jan 01, 2023
Code for the paper Hybrid Spectrogram and Waveform Source Separation

Demucs Music Source Separation This is the 3rd release of Demucs (v3), featuring hybrid source separation. For the waveform only Demucs (v2): Go this

Meta Research 4.8k Jan 04, 2023
免费获取http代理并生成proxifier配置文件

freeproxy 免费获取http代理并生成proxifier配置文件 公众号:台下言书 工具说明:https://mp.weixin.qq.com/s?__biz=MzIyNDkwNjQ5Ng==&mid=2247484425&idx=1&sn=56ccbe130822aa35038095317

说书人 32 Mar 25, 2022
Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation

FLAME Original Pytorch Implementation of FLAME: Facial Landmark Heatmap Activated Multimodal Gaze Estimation, accepted at the 17th IEEE Internation Co

Neelabh Sinha 19 Dec 17, 2022
Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021.

Code of the paper "Deep Human Dynamics Prior" in ACM MM 2021. Figure 1: In the process of motion capture (mocap), some joints or even the whole human

Shinny cui 3 Oct 31, 2022
Code for NeurIPS2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints"

This repository is the code for NeurIPS 2021 submission "A Surrogate Objective Framework for Prediction+Programming with Soft Constraints". Edit 2021/

10 Dec 20, 2022
A coin flip game in which you can put the amount of money below or equal to 1000 and then choose heads or tail

COIN_FLIPPY ##This is a simple example package. You can use Github-flavored Markdown to write your content. Coinflippy A coin flip game in which you c

2 Dec 26, 2021
A model to classify a piece of news as REAL or FAKE

Fake_news_classification A model to classify a piece of news as REAL or FAKE. This python project of detecting fake news deals with fake and real news

Gokul Stark 1 Jan 29, 2022
Losslandscapetaxonomy - Taxonomizing local versus global structure in neural network loss landscapes

Taxonomizing local versus global structure in neural network loss landscapes Int

Yaoqing Yang 8 Dec 30, 2022