Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

Overview

Deep Learning Tutorial for Kaggle Ultrasound Nerve Segmentation competition, using Keras

This tutorial shows how to use Keras library to build deep neural network for ultrasound image nerve segmentation. More info on this Kaggle competition can be found on https://www.kaggle.com/c/ultrasound-nerve-segmentation.

This deep neural network achieves ~0.57 score on the leaderboard based on test images, and can be a good staring point for further, more serious approaches.

The architecture was inspired by U-Net: Convolutional Networks for Biomedical Image Segmentation.


Update 02.04.2017.

Changes:

  • using Keras 2
  • using TF backend instead of Theano
  • using scikit-image instead of cv2
  • added code for saving predicted images to disk
  • training data is now split into train/validation data (80%/20%)

Overview

Data

Provided data is processed by data.py script. This script just loads the images and saves them into NumPy binary format files .npy for faster loading later.

Pre-processing

The images are not pre-processed in any way, except resizing to 96 x 96. Since the images are pretty noisy, I expect that some thoughtful pre-processing could yield better performance of the model.

Output images (masks) are scaled to [0, 1] interval.

Model

The provided model is basically a convolutional auto-encoder, but with a twist - it has skip connections from encoder layers to decoder layers that are on the same "level". See picture below (note that image size and numbers of convolutional filters in this tutorial differs from the original U-Net architecture).

img/u-net-architecture.png

This deep neural network is implemented with Keras functional API, which makes it extremely easy to experiment with different interesting architectures.

Output from the network is a 96 x 96 which represents mask that should be learned. Sigmoid activation function makes sure that mask pixels are in [0, 1] range.

Training

The model is trained for 20 epochs, where each epoch took ~30 seconds on Titan X. Memory footprint of the model is ~800MB.

After 20 epochs, calculated Dice coefficient is ~0.68, which yielded ~0.57 score on leaderboard, so obviously this model overfits (cross-validation pull requests anyone? ;)).

Loss function for the training is basically just a negative of Dice coefficient (which is used as evaluation metric on the competition), and this is implemented as custom loss function using Keras backend - check dice_coef() and dice_coef_loss() functions in train.py for more detail. Also, for making the loss function smooth, a factor smooth = 1 factor is added.

The weights are updated by Adam optimizer, with a 1e-5 learning rate. During training, model's weights are saved in HDF5 format.


How to use

Dependencies

This tutorial depends on the following libraries:

  • scikit-image
  • Tensorflow
  • Keras >= 2.0

Also, this code should be compatible with Python versions 2.7-3.5.

Prepare the data

In order to extract raw images and save them to .npy files, you should first prepare its structure. Make sure that raw dir is located in the root of this project. Also, the tree of raw dir must be like:

-raw
 |
 ---- train
 |    |
 |    ---- 1_1.tif
 |    |
 |    ---- …
 |
 ---- test
      |
      ---- 1.tif
      |
      ---- …
  • Now run python data.py.

Running this script will create train and test images and save them to .npy files.

Define the model

  • Check out get_unet() in train.py to modify the model, optimizer and loss function.

Train the model and generate masks for test images

  • Run python train.py to train the model.

Check out train_predict() to modify the number of iterations (epochs), batch size, etc.

After this script finishes, in imgs_mask_test.npy masks for corresponding images in imgs_test.npy should be generated. I suggest you examine these masks for getting further insight of your model's performance.

Generate submission

  • Run python submission.py to generate the submission file submission.csv for the generated masks.

Check out function submission() and run_length_enc() (thanks woshialex) for details.

About Keras

Keras is a minimalist, highly modular neural networks library, written in Python and capable of running on top of either TensorFlow or Theano. It was developed with a focus on enabling fast experimentation. Being able to go from idea to result with the least possible delay is key to doing good research.

Use Keras if you need a deep learning library that:

allows for easy and fast prototyping (through total modularity, minimalism, and extensibility). supports both convolutional networks and recurrent networks, as well as combinations of the two. supports arbitrary connectivity schemes (including multi-input and multi-output training). runs seamlessly on CPU and GPU. Read the documentation Keras.io

Keras is compatible with: Python 2.7-3.5.

Owner
Marko Jocić
ML Engineer @ Apple
Marko Jocić
Official PyTorch code for CVPR 2020 paper "Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision"

Deep Active Learning for Biased Datasets via Fisher Kernel Self-Supervision https://arxiv.org/abs/2003.00393 Abstract Active learning (AL) aims to min

Denis 29 Nov 21, 2022
This repository is an implementation of paper : Improving the Training of Graph Neural Networks with Consistency Regularization

CRGNN Paper : Improving the Training of Graph Neural Networks with Consistency Regularization Environments Implementing environment: GeForce RTX™ 3090

THUDM 28 Dec 09, 2022
MoCoPnet - Deformable 3D Convolution for Video Super-Resolution

Deformable 3D Convolution for Video Super-Resolution Pytorch implementation of l

Xinyi Ying 28 Dec 15, 2022
This is an example of object detection on Micro bacterium tuberculosis using Mask-RCNN

Mask-RCNN on Mycobacterium tuberculosis This is an example of object detection on Mycobacterium Tuberculosis using Mask RCNN. Implement of Mask R-CNN

Jun-En Ding 1 Sep 16, 2021
A cross-lingual COVID-19 fake news dataset

CrossFake An English-Chinese COVID-19 fake&real news dataset from the ICDMW 2021 paper below: Cross-lingual COVID-19 Fake News Detection. Jiangshu Du,

Yingtong Dou 11 Dec 01, 2022
Parasite: a tool allowing you to compress and decompress files, to reduce their size

🦠 Parasite 🦠 Parasite is a tool written in Python3 allowing you to "compress" any file, reducing its size. ⭐ Features ⭐ + Fast + Good optimization,

Billy 30 Nov 25, 2022
A C implementation for creating 2D voronoi diagrams

Branch OSX/Linux Windows master dev jc_voronoi A fast C/C++ header only implementation for creating 2D Voronoi diagrams from a point set Uses Fortune'

Mathias Westerdahl 481 Dec 29, 2022
YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4

YOLTv4 builds upon YOLT and SIMRDWN, and updates these frameworks to use the most performant version of YOLO, YOLOv4. YOLTv4 is designed to detect objects in aerial or satellite imagery in arbitraril

Adam Van Etten 161 Jan 06, 2023
Library of deep learning models and datasets designed to make deep learning more accessible and accelerate ML research.

Tensor2Tensor Tensor2Tensor, or T2T for short, is a library of deep learning models and datasets designed to make deep learning more accessible and ac

12.9k Jan 09, 2023
Simple data balancing baselines for worst-group-accuracy benchmarks.

BalancingGroups Code to replicate the experimental results from Simple data balancing baselines achieve competitive worst-group-accuracy. Replicating

Meta Research 29 Dec 02, 2022
Proposed n-stage Latent Dirichlet Allocation method - A Novel Approach for LDA

n-stage Latent Dirichlet Allocation (n-LDA) Proposed n-LDA & A Novel Approach for classical LDA Latent Dirichlet Allocation (LDA) is a generative prob

Anıl Güven 4 Mar 07, 2022
Automatic Data-Regularized Actor-Critic (Auto-DrAC)

Auto-DrAC: Automatic Data-Regularized Actor-Critic This is a PyTorch implementation of the methods proposed in Automatic Data Augmentation for General

89 Dec 13, 2022
An Open Source Machine Learning Framework for Everyone

Documentation TensorFlow is an end-to-end open source platform for machine learning. It has a comprehensive, flexible ecosystem of tools, libraries, a

170.1k Jan 05, 2023
ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

ML-PersonalWork - Big assignment PersonalWork in Machine Learning, 2021 autumn BUAA.

Snapdragon Lee 2 Dec 16, 2022
Implementation of Hierarchical Transformer Memory (HTM) for Pytorch

Hierarchical Transformer Memory (HTM) - Pytorch Implementation of Hierarchical Transformer Memory (HTM) for Pytorch. This Deepmind paper proposes a si

Phil Wang 63 Dec 29, 2022
Exponential Graph is Provably Efficient for Decentralized Deep Training

Exponential Graph is Provably Efficient for Decentralized Deep Training This code repository is for the paper Exponential Graph is Provably Efficient

3 Apr 20, 2022
190 Jan 03, 2023
Evaluation and Benchmarking of Speech Super-resolution Methods

Speech Super-resolution Evaluation and Benchmarking What this repo do: A toolbox for the evaluation of speech super-resolution algorithms. Unify the e

Haohe Liu (刘濠赫) 84 Dec 20, 2022
Official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels".

WarPI The official PyTorch implemention of our paper "Learning to Rectify for Robust Learning with Noisy Labels". Run python main.py --corruption_type

Haoliang Sun 3 Sep 03, 2022
A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets

HOW TO USE THIS PROJECT A Review of Deep Learning Techniques for Markerless Human Motion on Synthetic Datasets Based on DeepLabCut toolbox, we run wit

1 Jan 10, 2022