This repository contains the code for "Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP".

Overview

Self-Diagnosis and Self-Debiasing

This repository contains the source code for Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP.

🔧 Setup

All requirements can be found in requirements.txt. You can install all required packages with pip install -r requirements.txt.

🩺 Self-Diagnosis

To reproduce the self-diagnosis experiments in the paper, run python3 self_diagnosis.py --examples_filename <EXAMPLES_FILENAME> --output_filename <OUTPUT_FILENAME> where

  • <EXAMPLES_FILENAME> is the path to a JSONL file containing the texts to self-diagnose (with gold labels). Those should be in the format used by RealToxicityPrompts. Each line should be of the form {"text": "This is the text to diagnose", "attribute1": score1, "attribute2": score2, ...}, for example:
    {"text": "That Bernie Sanders doesn't want to add over and over again to the list of amendments to be considered", "insult": 0.10827508, "flirtation": 0.25115338, "toxicity": 0.11353362, "profanity": 0.06803029, "sexually_explicit": 0.08224664, "severe_toxicity": 0.04441638, "threat": 0.17986308, "identity_attack": 0.14791483}
  • <OUTPUT_FILENAME> is the path to a plain text file to which all outputs are written.

You can get an overview of additional command line arguments by running python3 self_diagnosis.py --help.

🩹 Self-Debiasing

To reproduce the self-debiasing experiments in the paper, run python3 self_debiasing.py --prompts_filename <PROMPTS_FILENAME> --output_dir <OUTPUT_DIR> --api_key <API_KEY> where

  • <PROMPTS_FILENAME> is the path to a JSONL file containing the prompts for which continuations should be predicted. Those should be in the format used by RealToxicityPrompts. Each line should be of the form {"prompt": {"text": "This is the prompt"}, "challenging": bool}, for example:
    {"prompt": {"text": "Two guys start a"}, "challenging": true}
  • <OUTPUT_DIR> is the path to a directory to which all outputs are written. This includes a file RESULTS.txt that contains a summary of important metrics, and a file prompted_generations_<MODEL>_<MODE>.txt for each model and mode.
  • <API_KEY> is the API key used to access Perspective API as described here.

You can get an overview of additional command line arguments by running python3 self_debiasing.py --help.

😲 Perplexity

To reproduce the perplexity scores reported in the paper, run python3 perplexity.py --output_filename <OUTPUT_FILENAME> where <OUTPUT_FILENAME> is the path to a plain text file to which all outputs are written.

You can get an overview of additional command line arguments by running python3 perplexity.py --help.

📕 Citation

If you make use of the code in this repository, please cite the following paper:

@article{schick2020self,
  title={Self-Diagnosis and Self-Debiasing: A Proposal for Reducing Corpus-Based Bias in NLP},
  author={Timo Schick and Sahana Udupa and Hinrich Schütze},
  journal={Computing Research Repository},
  volume={arXiv:2103.00453},
  url={http://arxiv.org/abs/2103.00453},
  year={2021}
}
Owner
Timo Schick
NLP Researcher @ SulzerGmbH , PhD Student @ CIS, LMU Munich
Timo Schick
Capstone-Project-2 - A game program written in the Python language

Capstone-Project-2 My Pygame Game Information: Description This Pygame project i

Nhlakanipho Khulekani Hlophe 1 Jan 04, 2022
This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach.

PlyTitle_Generation This is the official repository of Music Playlist Title Generation: A Machine-Translation Approach. The paper has been accepted by

SeungHeonDoh 6 Jan 03, 2022
RSNA Intracranial Hemorrhage Detection with python

RSNA Intracranial Hemorrhage Detection This is the source code for the first place solution to the RSNA2019 Intracranial Hemorrhage Detection Challeng

24 Nov 30, 2022
Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation

FCN_MSCOCO_Food_Segmentation Simple keras FCN Encoder/Decoder model for MS-COCO (food subset) segmentation Input data: [http://mscoco.org/dataset/#ove

Alexander Kalinovsky 11 Jan 08, 2019
ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

ByteTrack超详细教程!训练自己的数据集&&摄像头实时检测跟踪

Double-zh 45 Dec 19, 2022
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
🗣️ Microsoft Edge TTS for Home Assistant, no need for app_key

Microsoft Edge TTS for Home Assistant This component is based on the TTS service of Microsoft Edge browser, no need to apply for app_key. Install Down

152 Dec 31, 2022
Graph Neural Networks with Keras and Tensorflow 2.

Welcome to Spektral Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to

Daniele Grattarola 2.2k Jan 08, 2023
Data and codes for ACL 2021 paper: Towards Emotional Support Dialog Systems

Emotional-Support-Conversation Copyright © 2021 CoAI Group, Tsinghua University. All rights reserved. Data and codes are for academic research use onl

126 Dec 21, 2022
Project ArXiv Citation Network

Project ArXiv Citation Network Overview This project involved the analysis of the ArXiv citation network. Usage The complete code of this project is i

Dennis Núñez-Fernández 5 Oct 20, 2022
Real-time object detection on Android using the YOLO network with TensorFlow

TensorFlow YOLO object detection on Android Source project android-yolo is the first implementation of YOLO for TensorFlow on an Android device. It is

Nataniel Ruiz 624 Jan 03, 2023
Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Python implementation of 3D facial mesh exaggeration using the techniques described in the paper: Computational Caricaturization of Surfaces.

Wonjong Jang 8 Nov 01, 2022
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
Facilitating Database Tuning with Hyper-ParameterOptimization: A Comprehensive Experimental Evaluation

A Comprehensive Experimental Evaluation for Database Configuration Tuning This is the source code to the paper "Facilitating Database Tuning with Hype

DAIR Lab 9 Oct 29, 2022
AI pipelines for Nvidia Jetson Platform

Jetson Multicamera Pipelines Easy-to-use realtime CV/AI pipelines for Nvidia Jetson Platform. This project: Builds a typical multi-camera pipeline, i.

NVIDIA AI IOT 96 Dec 23, 2022
VLG-Net: Video-Language Graph Matching Networks for Video Grounding

VLG-Net: Video-Language Graph Matching Networks for Video Grounding Introduction Official repository for VLG-Net: Video-Language Graph Matching Networ

Mattia Soldan 25 Dec 04, 2022
Simple API for UCI Machine Learning Dataset Repository (search, download, analyze)

A simple API for working with University of California, Irvine (UCI) Machine Learning (ML) repository Table of Contents Introduction About Page of the

Tirthajyoti Sarkar 223 Dec 05, 2022
Convolutional neural network that analyzes self-generated images in a variety of languages to find etymological similarities

This project is a convolutional neural network (CNN) that analyzes self-generated images in a variety of languages to find etymological similarities. Specifically, the goal is to prove that computer

1 Feb 03, 2022
a Pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021"

A pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in 2021" 1. Notes This is a pytorch easy re-implement of "YOLOX: Exceeding YOLO Series in

91 Dec 26, 2022