Official PyTorch Implementation of Embedding Transfer with Label Relaxation for Improved Metric Learning, CVPR 2021

Overview

Embedding Transfer with Label Relaxation for Improved Metric Learning

Official PyTorch implementation of CVPR 2021 paper Embedding Transfer with Label Relaxation for Improved Metric Learning.

Embedding trnasfer with Relaxed Contrastive Loss improves performance, or reduces sizes and output dimensions of embedding model effectively.

This repository provides source code of experiments on three datasets (CUB-200-2011, Cars-196 and Stanford Online Products) including relaxed contrastive loss, relaxed MS loss, and 6 other knowledge distillation or embedding transfer methods such as:

  • FitNet, Fitnets: hints for thin deep nets
  • Attention, Paying More Attention to Attention: Improving the Performance of Convolutional Neural Networks via Attention Transfer
  • CRD, Contrastive Representation Distillation
  • DarkRank, Darkrank: Accelerating Deep Metric Learning via Cross Sample Similarities Transfer
  • PKT, Learning Deep Representations with Probabilistic Knowledge Transfer
  • RKD, Relational Knowledge Distillation

Overview

Relaxed Contrastive Loss

  • Relaxed contrastive loss exploits pairwise similarities between samples in the source embedding space as relaxed labels, and transfers them through a contrastive loss used for learning target embedding models.

graph

Experimental Restuls

  • Our method achieves the state of the art when embedding dimension is 512, and is as competitive as recent metric learning models even with a substantially smaller embedding dimension. In all experiments, it is superior to other embedding transfer techniques.

graph

Requirements

Prepare Datasets

  1. Download three public benchmarks for deep metric learning.

  2. Extract the tgz or zip file into ./data/ (Exceptionally, for Cars-196, put the files in a ./data/cars196)

Prepare Pretrained Source models

Download the pretrained source models using ./scripts/download_pretrained_source_models.sh.

sh scripts/download_pretrained_source_models.sh

Training Target Embedding Network with Relaxed Contrastive Loss

Self-transfer Setting

  • Transfer the knowledge of source model to target model with the same architecture and embedding dimension for performance improvement.
  • Source Embedding Network (BN–Inception, 512 dim) 🠢 Target Embedding Network (BN–Inception, 512 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 512 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cub_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \ 
--embedding-size 512 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cars_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 512 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/bn_inception/SOP_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
FitNet BN512 69.9 79.5 86.2 87.6 92.2 95.6 78.7 90.4 96.1
Attention BN512 66.3 76.2 84.5 84.7 90.6 94.2 78.2 90.4 96.2
CRD BN512 67.7 78.1 85.7 85.3 91.1 94.8 78.1 90.2 95.8
DarkRank BN512 66.7 76.5 84.8 84.0 90.0 93.8 75.7 88.3 95.3
PKT BN512 69.1 78.8 86.4 86.4 91.6 94.9 78.4 90.2 96.0
RKD BN512 70.9 80.8 87.5 88.9 93.5 96.4 78.5 90.2 96.0
Ours BN512 72.1 81.3 87.6 89.6 94.0 96.5 79.8 91.1 96.3

Dimensionality Reduction Setting

  • Transfer to the same architecture with a lower embedding dimension for efficient image retrieval.
  • Source Embedding Network (BN–Inception, 512 dim) 🠢 Target Embedding Network (BN–Inception, 64 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cub_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/bn_inception/cars_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model bn_inception \
--embedding-size 64 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/bn_inception/SOP_bn_inception_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA BN512 69.1 78.9 86.1 86.4 91.9 95.0 79.2 90.7 96.2
FitNet BN64 62.3 73.8 83.0 81.2 87.7 92.5 76.6 89.3 95.4
Attention BN64 58.3 69.4 79.1 79.2 86.7 91.8 76.3 89.2 95.4
CRD BN64 60.9 72.7 81.7 79.2 87.2 92.1 75.5 88.3 95.3
DarkRank BN64 63.5 74.3 83.1 78.1 85.9 91.1 73.9 87.5 94.8
PKT BN64 63.6 75.8 84.0 82.2 88.7 93.5 74.6 87.3 94.2
RKD BN64 65.8 76.7 85.0 83.7 89.9 94.1 70.2 83.8 92.1
Ours BN64 67.4 78.0 85.9 86.5 92.3 95.3 76.3 88.6 94.8

Model Compression Setting

  • Transfer to a smaller network with a lower embedding dimension for usage in low-power and resource limited devices.
  • Source Embedding Network (ResNet50, 512 dim) 🠢 Target Embedding Network (ResNet18, 128 dim)

CUB-200-2011

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset cub --epochs 90 \
--source-ckpt ./pretrained_source/resnet50/cub_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

Cars-196

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset cars --epochs 90 \
--source-ckpt ./pretrained_source/resnet50/cars_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1

SOP

python code/train_target.py --gpu-id 0 --loss Relaxed_Contra --model resnet18 \
--embedding-size 128 --batch-size 90 --IPC 2 --dataset SOP --epochs 150 \
--source-ckpt ./pretrained_source/resnet50/SOP_resnet50_512dim_Proxy_Anchor_ckpt.pth \
--view 2 --sigma 1 --delta 1 --save 1
CUB-200-2011 Cars-196 SOP
Method Backbone [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected] [email protected]
Source: PA R50512 69.9 79.6 88.6 87.7 92.7 95.5 80.5 91.8 98.8
FitNet R18128 61.0 72.2 81.1 78.5 86.0 91.4 76.7 89.4 95.5
Attention R18128 61.0 71.7 81.5 78.6 85.9 91.0 76.4 89.3 95.5
CRD R18128 62.8 73.8 83.2 80.6 87.9 92.5 76.2 88.9 95.3
DarkRank R18128 61.2 72.5 82.0 75.3 83.6 89.4 72.7 86.7 94.5
PKT R18128 65.0 75.6 84.8 81.6 88.8 93.4 76.9 89.2 95.5
RKD R18128 65.8 76.3 84.8 84.2 90.4 94.3 75.7 88.4 95.1
Ours R18128 66.6 78.1 85.9 86.0 91.6 95.3 78.4 90.4 96.1

Train Source Embedding Network

This repository also provides code for training source embedding network with several losses as well as proxy-anchor loss. For details on how to train the source embedding network, please see the Proxy-Anchor Loss repository.

  • For example, training source embedding network (BN–Inception, 512 dim) with Proxy-Anchor Loss on the CUB-200-2011 as
python code/train_source.py --gpu-id 0 --loss Proxy_Anchor --model bn_inception \
--embedding-size 512 --batch-size 180 --lr 1e-4 --dataset cub \
--warm 1 --bn-freeze 1 --lr-decay-step 10 

Evaluating Image Retrieval

Follow the below steps to evaluate the trained model.
Trained best model will be saved in the ./logs/folder_name.

# The parameters should be changed according to the model to be evaluated.
python code/evaluate.py --gpu-id 0 \
                   --batch-size 120 \
                   --model bn_inception \
                   --embedding-size 512 \
                   --dataset cub \
                   --ckpt /set/your/model/path/best_model.pth

Acknowledgements

Our source code is modified and adapted on these great repositories:

Citation

If you use this method or this code in your research, please cite as:

@inproceedings{kim2021embedding,
  title={Embedding Transfer with Label Relaxation for Improved Metric Learning},
  author={Kim, Sungyeon and Kim, Dongwon and Cho, Minsu and Kwak, Suha},
  booktitle={Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition},
  year={2021}
}
Owner
Sungyeon Kim
Sungyeon Kim
Predicting Student Attentiveness using OpenCV

Predicting-Student-Attentiveness-using-OpenCV The model will predict if a student is attentive or not through facial parameter received through the st

Johann Pinto 2 Aug 20, 2022
Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization

Sync2Gen Code for ICCV 2021 paper: Scene Synthesis via Uncertainty-Driven Attribute Synchronization 0. Environment Environment: python 3.6 and cuda 10

Haitao Yang 62 Dec 30, 2022
A denoising diffusion probabilistic model (DDPM) tailored for conditional generation of protein distograms

Denoising Diffusion Probabilistic Model for Proteins Implementation of Denoising Diffusion Probabilistic Model in Pytorch. It is a new approach to gen

Phil Wang 108 Nov 23, 2022
Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion

Feature-Style Encoder for Style-Based GAN Inversion Official implementation for paper: Feature-Style Encoder for Style-Based GAN Inversion. Code will

InterDigital 63 Jan 03, 2023
PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks"

This repository is an official PyTorch(Geometric) implementation of G^2GNN in "Imbalanced Graph Classification via Graph-of-Graph Neural Networks". Th

Yu Wang (Jack) 13 Nov 18, 2022
A powerful framework for decentralized federated learning with user-defined communication topology

Scatterbrained Decentralized Federated Learning Scatterbrained makes it easy to build federated learning systems. In addition to traditional federated

Johns Hopkins Applied Physics Laboratory 7 Sep 26, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022
FinEAS: Financial Embedding Analysis of Sentiment 📈

FinEAS: Financial Embedding Analysis of Sentiment 📈 (SentenceBERT for Financial News Sentiment Regression) This repository contains the code for gene

LHF Labs 31 Dec 13, 2022
Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature

Industrial Image Anomaly Localization Based on Gaussian Clustering of Pre-trained Feature Q. Wan, L. Gao, X. Li and L. Wen, "Industrial Image Anomaly

smiler 6 Dec 25, 2022
Code to accompany our paper "Continual Learning Through Synaptic Intelligence" ICML 2017

Continual Learning Through Synaptic Intelligence This repository contains code to reproduce the key findings of our path integral approach to prevent

Ganguli Lab 82 Nov 03, 2022
Understanding Convolution for Semantic Segmentation

TuSimple-DUC by Panqu Wang, Pengfei Chen, Ye Yuan, Ding Liu, Zehua Huang, Xiaodi Hou, and Garrison Cottrell. Introduction This repository is for Under

TuSimple 585 Dec 31, 2022
Learned Initializations for Optimizing Coordinate-Based Neural Representations

Learned Initializations for Optimizing Coordinate-Based Neural Representations Project Page | Paper Matthew Tancik*1, Ben Mildenhall*1, Terrance Wang1

Matthew Tancik 127 Jan 03, 2023
Code for the Interspeech 2021 paper "AST: Audio Spectrogram Transformer".

AST: Audio Spectrogram Transformer Introduction Citing Getting Started ESC-50 Recipe Speechcommands Recipe AudioSet Recipe Pretrained Models Contact I

Yuan Gong 603 Jan 07, 2023
TC-GNN with Pytorch integration

TC-GNN (Running Sparse GNN on Dense Tensor Core on Ampere GPU) Cite this project and paper. @inproceedings{TC-GNN, title={TC-GNN: Accelerating Spars

YUKE WANG 19 Dec 01, 2022
Easy-to-use micro-wrappers for Gym and PettingZoo based RL Environments

SuperSuit introduces a collection of small functions which can wrap reinforcement learning environments to do preprocessing ('microwrappers'). We supp

Farama Foundation 357 Jan 06, 2023
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Experiments with differentiable stacks and queues in PyTorch

Please use stacknn-core instead! StackNN This project implements differentiable stacks and queues in PyTorch. The data structures are implemented in s

Will Merrill 141 Oct 06, 2022
This repository contains pre-trained models and some evaluation code for our paper Towards Unsupervised Dense Information Retrieval with Contrastive Learning

Contriever: Towards Unsupervised Dense Information Retrieval with Contrastive Learning This repository contains pre-trained models and some evaluation

Meta Research 207 Jan 08, 2023
Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning. CVPR 2018

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning Tensorflow code and models for the paper: Large Scale Fine-Grained Categ

Yin Cui 187 Oct 01, 2022
Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect"

Source code for the paper "Periodic Traveling Waves in an Integro-Difference Equation With Non-Monotonic Growth and Strong Allee Effect" by Michael Ne

M Nestor 1 Apr 19, 2022