A PyTorch-based library for semi-supervised learning

Overview

News

If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]; [email protected]) for more information. We plan to add more SSL algorithms and expand TorchSSL from CV to NLP and Speech.

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

An all-in-one toolkit based on PyTorch for semi-supervised learning (SSL). We implmented 9 popular SSL algorithms to enable fair comparison and boost the development of SSL algorithms.

FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling(https://arxiv.org/abs/2110.08263)

Supported algorithms

We support fully supervised training + 9 popular SSL algorithms as listed below:

  1. Pi-Model [1]
  2. MeanTeacher [2]
  3. Pseudo-Label [3]
  4. VAT [4]
  5. MixMatch [5]
  6. UDA [6]
  7. ReMixMatch [7]
  8. FixMatch [8]
  9. FlexMatch [9]

Besides, we implement our Curriculum Pseudo Labeling (CPL) method for Pseudo-Label (Flex-Pseudo-Label) and UDA (Flex-UDA).

Supported datasets

We support 5 popular datasets in SSL research as listed below:

  1. CIFAR-10
  2. CIFAR-100
  3. STL-10
  4. SVHN
  5. ImageNet

Installation

  1. Prepare conda
  2. Run conda env create -f environment.yml

Usage

It is convenient to perform experiment with TorchSSL. For example, if you want to perform FlexMatch algorithm:

  1. Modify the config file in config/flexmatch/flexmatch.yaml as you need
  2. Run python flexmatch --c config/flexmatch/flexmatch.yaml

Customization

If you want to write your own algorithm, please follow the following steps:

  1. Create a directory for your algorithm, e.g., SSL, write your own model file SSl/SSL.py in it.
  2. Write the training file in SSL.py
  3. Write the config file in config/SSL/SSL.yaml

Results

avatar avatar avatar avatar

Citation

If you think this toolkit or the results are helpful to you and your research, please cite our paper:

@article{zhang2021flexmatch},
  title={FlexMatch: Boosting Semi-supervised Learning with Curriculum Pseudo Labeling},
  author={Zhang, Bowen and Wang, Yidong and Hou Wenxin and Wu, Hao and Wang, Jindong and Okumura, Manabu and Shinozaki, Takahiro},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Maintainer

Yidong Wang1, Hao Wu2, Bowen Zhang1, Wenxin Hou1,3, Jindong Wang3

Shinozaki Lab1 http://www.ts.ip.titech.ac.jp/

Okumura Lab2 http://lr-www.pi.titech.ac.jp/wp/

Microsoft Research Asia3

References

[1] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-supervised learning with ladder networks. InNeurIPS, pages 3546–3554, 2015.

[2] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averagedconsistency targets improve semi-supervised deep learning results. InNeurIPS, pages 1195–1204, 2017.

[3] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning methodfor deep neural networks. InWorkshop on challenges in representation learning, ICML,volume 3, 2013.

[4] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:a regularization method for supervised and semi-supervised learning.IEEE TPAMI, 41(8):1979–1993, 2018.

[5] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and ColinRaffel. Mixmatch: A holistic approach to semi-supervised learning.NeurIPS, page 5050–5060,2019.

[6] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmen-tation for consistency training.NeurIPS, 33, 2020.

[7] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching andaugmentation anchoring. InICLR, 2019.

[8] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence.NeurIPS, 33, 2020.

[9] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao wu, Jindong Wang, Okumura Manabu, and Shinozaki Takahiro. FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. NeurIPS, 2021.

Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning].

CG3 This is the repository for the AAAI 21 paper [Contrastive and Generative Graph Convolutional Networks for Graph-based Semi-Supervised Learning]. R

12 Oct 28, 2022
Localizing Visual Sounds the Hard Way

Localizing-Visual-Sounds-the-Hard-Way Code and Dataset for "Localizing Visual Sounds the Hard Way". The repo contains code and our pre-trained model.

Honglie Chen 58 Dec 07, 2022
Implementation of Kronecker Attention in Pytorch

Kronecker Attention Pytorch Implementation of Kronecker Attention in Pytorch. Results look less than stellar, but if someone found some context where

Phil Wang 16 May 06, 2022
University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN

Music-Sentiment-Transfer University of Rochester 2021 Summer REU focusing on music sentiment transfer using CycleGAN Poster: Music Sentiment Transfer

Miles Sigel 2 Jan 24, 2022
MolRep: A Deep Representation Learning Library for Molecular Property Prediction

MolRep: A Deep Representation Learning Library for Molecular Property Prediction Summary MolRep is a Python package for fairly measuring algorithmic p

AI-Health @NSCC-gz 83 Dec 24, 2022
Preprocessed Datasets for our Multimodal NER paper

Unified Multimodal Transformer (UMT) for Multimodal Named Entity Recognition (MNER) Two MNER Datasets and Codes for our ACL'2020 paper: Improving Mult

76 Dec 21, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation

SSWS-loss_function_based_on_MS-TCN Supervised Sliding Window Smoothing Loss Function Based on MS-TCN for Video Segmentation Supervised Sliding Window

3 Aug 03, 2022
ROSITA: Enhancing Vision-and-Language Semantic Alignments via Cross- and Intra-modal Knowledge Integration

ROSITA News & Updates (24/08/2021) Release the demo to perform fine-grained semantic alignments using the pretrained ROSITA model. (15/08/2021) Releas

Vision and Language Group@ MIL 48 Dec 23, 2022
Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022)

Blockwise Sequential Model Learning Code for 'Blockwise Sequential Model Learning for Partially Observable Reinforcement Learning' (AAAI 2022) For ins

2 Jun 17, 2022
SMCA replication There are no extra compiled components in SMCA DETR and package dependencies are minimal

Usage There are no extra compiled components in SMCA DETR and package dependencies are minimal, so the code is very simple to use. We provide instruct

22 May 06, 2022
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
这是一个利用facenet和retinaface实现人脸识别的库,可以进行在线的人脸识别。

Facenet+Retinaface:人脸识别模型在Pytorch当中的实现 目录 注意事项 Attention 所需环境 Environment 文件下载 Download 预测步骤 How2predict 参考资料 Reference 注意事项 该库中包含了两个网络,分别是retinaface和

Bubbliiiing 102 Dec 30, 2022
Predicting Price of house by considering ,house age, Distance from public transport

House-Price-Prediction Predicting Price of house by considering ,house age, Distance from public transport, No of convenient stores around house etc..

Musab Jaleel 1 Jan 08, 2022
Implementation of the method described in the Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

4 Mar 11, 2022
EdiBERT, a generative model for image editing

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology"

GIANT Code and data for paper "GIANT: Scalable Creation of a Web-scale Ontology" https://arxiv.org/pdf/2004.02118.pdf Please cite our paper if this pr

Excalibur 39 Dec 29, 2022
ChebLieNet, a spectral graph neural network turned equivariant by Riemannian geometry on Lie groups.

ChebLieNet: Invariant spectral graph NNs turned equivariant by Riemannian geometry on Lie groups Hugo Aguettaz, Erik J. Bekkers, Michaël Defferrard We

haguettaz 12 Dec 10, 2022
Instance-level Image Retrieval using Reranking Transformers

Instance-level Image Retrieval using Reranking Transformers Fuwen Tan, Jiangbo Yuan, Vicente Ordonez, ICCV 2021. Abstract Instance-level image retriev

UVA Computer Vision 87 Jan 03, 2023