A PyTorch-based library for semi-supervised learning

Overview

News

If you want to join TorchSSL team, please e-mail Yidong Wang ([email protected]; [email protected]) for more information. We plan to add more SSL algorithms and expand TorchSSL from CV to NLP and Speech.

TorchSSL: A PyTorch-based Toolbox for Semi-Supervised Learning

An all-in-one toolkit based on PyTorch for semi-supervised learning (SSL). We implmented 9 popular SSL algorithms to enable fair comparison and boost the development of SSL algorithms.

FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling(https://arxiv.org/abs/2110.08263)

Supported algorithms

We support fully supervised training + 9 popular SSL algorithms as listed below:

  1. Pi-Model [1]
  2. MeanTeacher [2]
  3. Pseudo-Label [3]
  4. VAT [4]
  5. MixMatch [5]
  6. UDA [6]
  7. ReMixMatch [7]
  8. FixMatch [8]
  9. FlexMatch [9]

Besides, we implement our Curriculum Pseudo Labeling (CPL) method for Pseudo-Label (Flex-Pseudo-Label) and UDA (Flex-UDA).

Supported datasets

We support 5 popular datasets in SSL research as listed below:

  1. CIFAR-10
  2. CIFAR-100
  3. STL-10
  4. SVHN
  5. ImageNet

Installation

  1. Prepare conda
  2. Run conda env create -f environment.yml

Usage

It is convenient to perform experiment with TorchSSL. For example, if you want to perform FlexMatch algorithm:

  1. Modify the config file in config/flexmatch/flexmatch.yaml as you need
  2. Run python flexmatch --c config/flexmatch/flexmatch.yaml

Customization

If you want to write your own algorithm, please follow the following steps:

  1. Create a directory for your algorithm, e.g., SSL, write your own model file SSl/SSL.py in it.
  2. Write the training file in SSL.py
  3. Write the config file in config/SSL/SSL.yaml

Results

avatar avatar avatar avatar

Citation

If you think this toolkit or the results are helpful to you and your research, please cite our paper:

@article{zhang2021flexmatch},
  title={FlexMatch: Boosting Semi-supervised Learning with Curriculum Pseudo Labeling},
  author={Zhang, Bowen and Wang, Yidong and Hou Wenxin and Wu, Hao and Wang, Jindong and Okumura, Manabu and Shinozaki, Takahiro},
  booktitle={Neural Information Processing Systems (NeurIPS)},
  year={2021}
}

Maintainer

Yidong Wang1, Hao Wu2, Bowen Zhang1, Wenxin Hou1,3, Jindong Wang3

Shinozaki Lab1 http://www.ts.ip.titech.ac.jp/

Okumura Lab2 http://lr-www.pi.titech.ac.jp/wp/

Microsoft Research Asia3

References

[1] Antti Rasmus, Harri Valpola, Mikko Honkala, Mathias Berglund, and Tapani Raiko. Semi-supervised learning with ladder networks. InNeurIPS, pages 3546–3554, 2015.

[2] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averagedconsistency targets improve semi-supervised deep learning results. InNeurIPS, pages 1195–1204, 2017.

[3] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning methodfor deep neural networks. InWorkshop on challenges in representation learning, ICML,volume 3, 2013.

[4] Takeru Miyato, Shin-ichi Maeda, Masanori Koyama, and Shin Ishii. Virtual adversarial training:a regularization method for supervised and semi-supervised learning.IEEE TPAMI, 41(8):1979–1993, 2018.

[5] David Berthelot, Nicholas Carlini, Ian Goodfellow, Nicolas Papernot, Avital Oliver, and ColinRaffel. Mixmatch: A holistic approach to semi-supervised learning.NeurIPS, page 5050–5060,2019.

[6] Qizhe Xie, Zihang Dai, Eduard Hovy, Thang Luong, and Quoc Le. Unsupervised data augmen-tation for consistency training.NeurIPS, 33, 2020.

[7] David Berthelot, Nicholas Carlini, Ekin D Cubuk, Alex Kurakin, Kihyuk Sohn, Han Zhang,and Colin Raffel. Remixmatch: Semi-supervised learning with distribution matching andaugmentation anchoring. InICLR, 2019.

[8] Kihyuk Sohn, David Berthelot, Nicholas Carlini, Zizhao Zhang, Han Zhang, Colin A Raf-fel, Ekin Dogus Cubuk, Alexey Kurakin, and Chun-Liang Li. Fixmatch: Simplifying semi-supervised learning with consistency and confidence.NeurIPS, 33, 2020.

[9] Bowen Zhang, Yidong Wang, Wenxin Hou, Hao wu, Jindong Wang, Okumura Manabu, and Shinozaki Takahiro. FlexMatch: Boosting Semi-Supervised Learning with Curriculum Pseudo Labeling. NeurIPS, 2021.

Markov Attention Models

Introduction This repo contains code for reproducing the results in the paper Graphical Models with Attention for Context-Specific Independence and an

Vicarious 0 Dec 09, 2021
links and status of cool gradio demos

awesome-demos This is a list of some wonderful demos & applications built with Gradio. Here's how to contribute yours! πŸ–ŠοΈ Natural language processing

Gradio 96 Dec 30, 2022
Official Repo for ICCV2021 Paper: Learning to Regress Bodies from Images using Differentiable Semantic Rendering

[ICCV2021] Learning to Regress Bodies from Images using Differentiable Semantic Rendering Getting Started DSR has been implemented and tested on Ubunt

Sai Kumar Dwivedi 83 Nov 27, 2022
WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose

WHENet: Real-time Fine-Grained Estimation for Wide Range Head Pose Yijun Zhou and James Gregson - BMVC2020 Abstract: We present an end-to-end head-pos

368 Dec 26, 2022
Object detection using yolo-tiny model and opencv used as backend

Object detection Algorithm used : Yolo algorithm Backend : opencv Library required: opencv = 4.5.4-dev' Quick Overview about structure 1) main.py Load

2 Jul 06, 2022
Pipeline code for Sequential-GAM(Genome Architecture Mapping).

Sequential-GAM Pipeline code for Sequential-GAM(Genome Architecture Mapping). mapping whole_preprocess.sh include the whole processing of mapping. usa

3 Nov 03, 2022
Main repository for the HackBio'2021 Virtual Internship Experience for #Team-Greider ❀️

Hello 🀟 #Team-Greider The team of 20 people for HackBio'2021 Virtual Bioinformatics Internship πŸ’ πŸ–¨οΈ πŸ‘¨β€πŸ’» HackBio: https://thehackbio.com πŸ’¬ Ask us

Siddhant Sharma 7 Oct 20, 2022
torchlm is aims to build a high level pipeline for face landmarks detection, it supports training, evaluating, exporting, inference(Python/C++) and 100+ data augmentations

πŸ’ŽA high level pipeline for face landmarks detection, supports training, evaluating, exporting, inference and 100+ data augmentations, compatible with torchvision and albumentations, can easily instal

DefTruth 142 Dec 25, 2022
Automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azure

fwhr-calc-website This project is to automatically measure the facial Width-To-Height ratio and get facial analysis results provided by Microsoft Azur

SoohyunPark 1 Feb 07, 2022
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
An Implementation of SiameseRPN with Feature Pyramid Networks

SiameseRPN with FPN This project is mainly based on HelloRicky123/Siamese-RPN. What I've done is just add a Feature Pyramid Network method to the orig

3 Apr 16, 2022
Spatiotemporal resampling methods for mlr3

mlr3spatiotempcv Package website: release | dev Spatiotemporal resampling methods for mlr3. This package extends the mlr3 package framework with spati

45 Nov 21, 2022
A CNN model to detect hand gestures.

Software Used python - programming language used, tested on v3.8 miniconda - for managing virtual environment Libraries Used opencv - pip install open

Shivanshu 6 Jul 14, 2022
The Unsupervised Reinforcement Learning Benchmark (URLB)

The Unsupervised Reinforcement Learning Benchmark (URLB) URLB provides a set of leading algorithms for unsupervised reinforcement learning where agent

259 Dec 26, 2022
🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series

🌾 PASTIS 🌾 Panoptic Agricultural Satellite TIme Series (optical and radar) The PASTIS Dataset Dataset presentation PASTIS is a benchmark dataset for

86 Jan 04, 2023
a delightful machine learning tool that allows you to train, test and use models without writing code

igel A delightful machine learning tool that allows you to train/fit, test and use models without writing code Note I'm also working on a GUI desktop

Nidhal Baccouri 3k Jan 05, 2023
CONditionals for Ordinal Regression and classification in tensorflow

Condor Ordinal regression in Tensorflow Keras Tensorflow Keras implementation of CONDOR Ordinal Regression (aka ordinal classification) by Garrett Jen

9 Jul 31, 2022
CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP

CLOOB: Modern Hopfield Networks with InfoLOOB Outperform CLIP Andreas FΓΌrst* 1, Elisabeth Rumetshofer* 1, Viet Tran1, Hubert Ramsauer1, Fei Tang3, Joh

Institute for Machine Learning, Johannes Kepler University Linz 133 Jan 04, 2023
Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection

Novel Instances Mining with Pseudo-Margin Evaluation for Few-Shot Object Detection (NimPme) The official implementation of Novel Instances Mining with

12 Sep 08, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022