MolRep: A Deep Representation Learning Library for Molecular Property Prediction

Related tags

Deep LearningMolRep
Overview

MolRep: A Deep Representation Learning Library for Molecular Property Prediction

Summary

MolRep is a Python package for fairly measuring algorithmic progress on chemical property datasets. It currently provides a complete re-evaluation of 16 state-of-the-art deep representation models over 16 benchmark property datsaets.

architecture

If you found this package useful, please cite biorxiv for now:


Install & Usage

We provide a script to install the environment. You will need the conda package manager, which can be installed from here.

To install the required packages, follow there instructions (tested on a linux terminal):

  1. clone the repository

    git clone https://github.com/Jh-SYSU/MolRep

  2. cd into the cloned directory

    cd MolRep

  3. run the install script

    source install.sh [<your_cuda_version>]

Where <your_cuda_version> is an optional argument that can be either cpu, cu92, cu100, cu101. If you do not provide a cuda version, the script will default to cpu. The script will create a virtual environment named MolRep, with all the required packages needed to run our code. Important: do NOT run this command using bash instead of source!

Data

Data could be download from Google_Driver

Current Dataset

Dataset Task Task type #Molecule Splits Metric Reference
QM7 1 Regression 7160 Stratified MAE Wu et al.
QM8 12 Regression 21786 Random MAE Wu et al.
QM9 12 Regression 133885 Random MAE Wu et al.
ESOL 1 Regression 1128 Random RMSE Wu et al.
FreeSolv 1 Regression 642 Random RMSE Wu et al.
Lipophilicity 1 Regression 4200 Random RMSE Wu et al.
BBBP 1 Classification 2039 Scaffold ROC-AUC Wu et al.
Tox21 12 Classification 7831 Random ROC-AUC Wu et al.
SIDER 27 Classification 1427 Random ROC-AUC Wu et al.
ClinTox 2 Classification 1478 Random ROC-AUC Wu et al.
Liver injury 1 Classification 2788 Random ROC-AUC Xu et al.
Mutagenesis 1 Classification 6511 Random ROC-AUC Hansen et al.
hERG 1 Classification 4813 Random ROC-AUC Li et al.
MUV 17 Classification 93087 Random PRC-AUC Wu et al.
HIV 1 Classification 41127 Random ROC-AUC Wu et al.
BACE 1 Classification 1513 Random ROC-AUC Wu et al.

Methods

Current Methods

Self-/unsupervised Models

Methods Descriptions Reference
Mol2Vec Mol2Vec is an unsupervised approach to learns vector representations of molecular substructures that point in similar directions for chemically related substructures. Jaeger et al.
N-Gram graph N-gram graph is a simple unsupervised representation for molecules that first embeds the vertices in the molecule graph and then constructs a compact representation for the graph by assembling the ver-tex embeddings in short walks in the graph. Liu et al.
FP2Vec FP2Vec is a molecular featurizer that represents a chemical compound as a set of trainable embedding vectors and combine with CNN model. Jeon et al.
VAE VAE is a framework for training two neural networks (encoder and decoder) to learn a mapping from high-dimensional molecular representation into a lower-dimensional space. Kingma et al.

Sequence Models

Methods Descriptions Reference
BiLSTM BiLSTM is an artificial recurrent neural network (RNN) architecture to encoding sequences from compound SMILES strings. Hochreiter et al.
SALSTM SALSTM is a self-attention mechanism with improved BiLSTM for molecule representation. Zheng et al
Transformer Transformer is a network based solely on attention mechanisms and dispensing with recurrence and convolutions entirely to encodes compound SMILES strings. Vaswani et al.
MAT MAT is a molecule attention transformer utilized inter-atomic distances and the molecular graph structure to augment the attention mechanism. Maziarka et al.

Graph Models

Methods Descriptions Reference
DGCNN DGCNN is a deep graph convolutional neural network that proposes a graph convolution model with SortPooling layer which sorts graph vertices in a consistent order to learning the embedding of molec-ular graph. Zhang et al.
GraphSAGE GraphSAGE is a framework for inductive representation learning on molecular graphs that used to generate low-dimensional representations for atoms and performs sum, mean or max-pooling neigh-borhood aggregation to updates the atom representation and molecular representation. Hamilton et al.
GIN GIN is the Graph Isomorphism Network that builds upon the limitations of GraphSAGE to capture different graph structures with the Weisfeiler-Lehman graph isomorphism test. Xu et al.
ECC ECC is an Edge-Conditioned Convolution Network that learns a different parameter for each edge label (bond type) on the molecular graph, and neighbor aggregation is weighted according to specific edge parameters. Simonovsky et al.
DiffPool DiffPool combines a differentiable graph encoder with its an adaptive pooling mechanism that col-lapses nodes on the basis of a supervised criterion to learning the representation of molecular graphs. Ying et al.
MPNN MPNN is a message-passing graph neural network that learns the representation of compound molecular graph. It mainly focused on obtaining effective vertices (atoms) embedding Gilmer et al.
D-MPNN DMPNN is another message-passing graph neural network that messages associated with directed edges (bonds) rather than those with vertices. It can make use of the bond attributes. Yang et al.
CMPNN CMPNN is the graph neural network that improve the molecular graph embedding by strengthening the message interactions between edges (bonds) and nodes (atoms). Song et al.

Training

To train a model by K-fold, run 5-fold-training_example.ipynb.

Testing

To test a pretrained model, run testing-example.ipynb.

Results

Results on Classification Tasks.

Datasets BBBP Tox21 SIDER ClinTox MUV HIV BACE
Mol2Vec 0.9213±0.0052 0.8139±0.0081 0.6043±0.0061 0.8572±0.0054 0.1178±0.0032 0.8413±0.0047 0.8284±0.0023
N-Gram graph 0.9012±0.0385 0.8371±0.0421 0.6482±0.0437 0.8753±0.0077 0.1011±0.0000 0.8378±0.0034 0.8472±0.0057
FP2Vec 0.8076±0.0032 0.8578±0.0076 0.6678±0.0068 0.8834±0.0432 0.0856±0.0031 0.7894±0.0052 0.8129±0.0492
VAE 0.8378±0.0031 0.8315±0.0382 0.6493±0.0762 0.8674±0.0124 0.0794±0.0001 0.8109±0.0381 0.8368±0.0762
BiLSTM 0.8391±0.0032 0.8279±0.0098 0.6092±0.0303 0.8319±0.0120 0.0382±0.0000 0.7962±0.0098 0.8263±0.0031
SALSTM 0.8482±0.0329 0.8253±0.0031 0.6308±0.0036 0.8317±0.0003 0.0409±0.0000 0.8034±0.0128 0.8348±0.0019
Transformer 0.9610±0.0119 0.8129±0.0013 0.6017±0.0012 0.8572±0.0032 0.0716±0.0017 0.8372±0.0314 0.8407±0.0738
MAT 0.9620±0.0392 0.8393±0.0039 0.6276±0.0029 0.8777±0.0149 0.0913±0.0001 0.8653±0.0054 0.8519±0.0504
DGCNN 0.9311±0.0434 0.7992±0.0057 0.6007±0.0053 0.8302±0.0126 0.0438±0.0000 0.8297±0.0038 0.8361±0.0034
GraphSAGE 0.9630±0.0474 0.8166±0.0041 0.6403±0.0045 0.9116±0.0146 0.1145±0.0000 0.8705±0.0724 0.9316±0.0360
GIN 0.8746±0.0359 0.8178±0.0031 0.5904±0.0000 0.8842±0.0004 0.0832±0.0000 0.8015±0.0328 0.8275±0.0034
ECC 0.9620±0.0003 0.8677±0.0090 0.6750±0.0092 0.8862±0.0831 0.1308±0.0013 0.8733±0.0025 0.8419±0.0092
DiffPool 0.8732±0.0391 0.8012±0.0130 0.6087±0.0130 0.8345±0.0233 0.0934±0.0001 0.8452±0.0042 0.8592±0.0391
MPNN 0.9321±0.0312 0.8440±0.014 0.6313±0.0121 0.8414±0.0294 0.0572±0.0001 0.8032±0.0092 0.8493±0.0013
DMPNN 0.9562±0.0070 0.8429±0.0391 0.6378±0.0329 0.8692±0.0051 0.0867±0.0032 0.8137±0.0072 0.8678±0.0372
CMPNN 0.9854±0.0215 0.8593±0.0088 0.6581±0.0020 0.9169±0.0065 0.1435±0.0002 0.8687±0.0003 0.8932±0.0019

More results will be updated soon.

Owner
AI-Health @NSCC-gz
AI-Health @NSCC-gz
Fuzzy Overclustering (FOC)

Fuzzy Overclustering (FOC) In real-world datasets, we need consistent annotations between annotators to give a certain ground-truth label. However, in

2 Nov 08, 2022
A Pytorch implementation of the multi agent deep deterministic policy gradients (MADDPG) algorithm

Multi-Agent-Deep-Deterministic-Policy-Gradients A Pytorch implementation of the multi agent deep deterministic policy gradients(MADDPG) algorithm This

Phil Tabor 159 Dec 28, 2022
Official Implementation for "ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement" https://arxiv.org/abs/2104.02699

ReStyle: A Residual-Based StyleGAN Encoder via Iterative Refinement Recently, the power of unconditional image synthesis has significantly advanced th

967 Jan 04, 2023
Reproduction of Vision Transformer in Tensorflow2. Train from scratch and Finetune.

Vision Transformer(ViT) in Tensorflow2 Tensorflow2 implementation of the Vision Transformer(ViT). This repository is for An image is worth 16x16 words

sungjun lee 42 Dec 27, 2022
Official implement of Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer

Evo-ViT: Slow-Fast Token Evolution for Dynamic Vision Transformer This repository contains the PyTorch code for Evo-ViT. This work proposes a slow-fas

YifanXu 53 Dec 05, 2022
Retinal vessel segmentation based on GT-UNet

Retinal vessel segmentation based on GT-UNet Introduction This project is a retinal blood vessel segmentation code based on UNet-like Group Transforme

Kent0n 27 Dec 18, 2022
HyperaPy: An automatic hyperparameter optimization framework ⚡🚀

hyperpy HyperPy: An automatic hyperparameter optimization framework Description HyperPy: Library for automatic hyperparameter optimization. Build on t

Sergio Mora 7 Sep 06, 2022
Save-restricted-v-3 - Save restricted content Bot For telegram

Save restricted content Bot Contact: Telegram A stable telegram bot to get restr

DEVANSH 11 Dec 21, 2022
A novel framework to automatically learn high-quality scanning of non-planar, complex anisotropic appearance.

appearance-scanner About This repository is an implementation of the neural network proposed in Free-form Scanning of Non-planar Appearance with Neura

Xiaohe Ma 14 Oct 18, 2022
[NeurIPS2021] Code Release of K-Net: Towards Unified Image Segmentation

K-Net: Towards Unified Image Segmentation Introduction This is an official release of the paper K-Net:Towards Unified Image Segmentation. K-Net will a

Wenwei Zhang 423 Jan 02, 2023
Official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspective with Transformer"

[AAAI2022] UCTransNet This repo is the official implementation of "UCTransNet: Rethinking the Skip Connections in U-Net from a Channel-wise Perspectiv

Haonan Wang 199 Jan 03, 2023
CLIP + VQGAN / PixelDraw

clipit Yet Another VQGAN-CLIP Codebase This started as a fork of @nerdyrodent's VQGAN-CLIP code which was based on the notebooks of @RiversWithWings a

dribnet 276 Dec 12, 2022
A learning-based data collection tool for human segmentation

FullBodyFilter A Learning-Based Data Collection Tool For Human Segmentation Contents Documentation Source Code and Scripts Overview of Project Usage O

Robert Jiang 4 Jun 24, 2022
Cleaned test data list of DukeMTMC-reID, ICCV2021

Cleaned DukeMTMC-reID Cleaned data list of DukeMTMC-reID released with our paper accepted by ICCV 2021: Learning Instance-level Spatial-Temporal Patte

14 Feb 19, 2022
Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs at the moment, Cycles and Arnold supported

GafferHaven Plugin for Gaffer providing direct acess to asset from PolyHaven.com. Only HDRIs are supported at the moment, in Cycles and Arnold lights.

Jakub Vondra 6 Jan 26, 2022
[ICCV'21] Pri3D: Can 3D Priors Help 2D Representation Learning?

Pri3D: Can 3D Priors Help 2D Representation Learning? [ICCV 2021] Pri3D leverages 3D priors for downstream 2D image understanding tasks: during pre-tr

Ji Hou 124 Jan 06, 2023
The codes and related files to reproduce the results for Image Similarity Challenge Track 2.

ISC-Track2-Submission The codes and related files to reproduce the results for Image Similarity Challenge Track 2. Required dependencies To begin with

Wenhao Wang 89 Jan 02, 2023
WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

WeakVRD-Captioning - Implementation of paper Improving Image Captioning with Better Use of Caption

30 Oct 28, 2022
A Pytorch implement of paper "Anomaly detection in dynamic graphs via transformer" (TADDY).

TADDY: Anomaly detection in dynamic graphs via transformer This repo covers an reference implementation for the paper "Anomaly detection in dynamic gr

Yue Tan 21 Nov 24, 2022
Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

Complete system for facial identity system. Include one-shot model, database operation, features visualization, monitoring

2 Dec 28, 2021