Tensorflow Implementation of Pixel Transposed Convolutional Networks (PixelTCN and PixelTCL)

Overview

Pixel Transposed Convolutional Networks

Created by Hongyang Gao, Hao Yuan, Zhengyang Wang and Shuiwang Ji at Texas A&M University.

Introduction

Pixel transposed convolutional layer (PixelTCL) is a more effective way to perform up-sampling operations than transposed convolutional layer.

Detailed information about PixelTCL is provided in [arXiv tech report] (https://arxiv.org/abs/1705.06820).

Citation

If using this code, please cite our paper.

@article{gao2017pixel,
  title={Pixel Transposed Convolutional Networks},
  author={Hongyang Gao and Hao Yuan and Zhengyang Wang and Shuiwang Ji},
  journal={arXiv preprint arXiv:1705.06820},
  year={2017}
}

Results

Semantic segmentation

model

Comparison of semantic segmentation results. The first and second rows are images and ground true labels, respectively. The third and fourth rows are the results of using regular transposed convolution and our proposed pixel transposed convolution, respectively.

Generate real images (VAE)

model

Sample face images generated by VAEs when trained on the CelebA dataset. The first two rows are images generated by a standard VAE with transposed convolutional layers for up-sampling. The last two rows are images generated by the same VAE model, but using PixelTCL for up-sampling in the generator network.

System requirement

Programming language

Python 3.5+

Python Packages

tensorflow (CPU) or tensorflow-gpu (GPU), numpy, h5py, progressbar, PIL, scipy

Prepare data

In this project, we provided a set of sample datasets for training, validation, and testing. If want to train on other data such as PASCAL, prepare the h5 files as required. utils/h5_utils.py could be used to generate h5 files.

Configure the network

All network hyperparameters are configured in main.py.

Training

max_step: how many iterations or steps to train

test_step: how many steps to perform a mini test or validation

save_step: how many steps to save the model

summary_step: how many steps to save the summary

Data

data_dir: data directory

train_data: h5 file for training

valid_data: h5 file for validation

test_data: h5 file for testing

batch: batch size

channel: input image channel number

height, width: height and width of input image

Debug

logdir: where to store log

modeldir: where to store saved models

sampledir: where to store predicted samples, please add a / at the end for convinience

model_name: the name prefix of saved models

reload_step: where to return training

test_step: which step to test or predict

random_seed: random seed for tensorflow

Network architecture

network_depth: how deep of the U-Net including the bottom layer

class_num: how many classes. Usually number of classes plus one for background

start_channel_num: the number of channel for the first conv layer

conv_name: use which convolutional layer in decoder. We have conv2d for standard convolutional layer, and ipixel_cl for input pixel convolutional layer proposed in our paper.

deconv_name: use which upsampling layer in decoder. We have deconv for standard transposed convolutional layer, ipixel_dcl for input pixel transposed convolutional layer, and pixel_dcl for pixel transposed convolutional layer proposed in our paper.

Training and Testing

Start training

After configure the network, we can start to train. Run

python main.py

The training of a U-Net for semantic segmentation will start.

Training process visualization

We employ tensorboard to visualize the training process.

tensorboard --logdir=logdir/

The segmentation results including training and validation accuracies, and the prediction outputs are all available in tensorboard.

Testing and prediction

Select a good point to test your model based on validation or other measures.

Fill the test_step in main.py with the checkpoint you want to test, run

python main.py --action=test

The final output include accuracy and mean_iou.

If you want to make some predictions, run

python main.py --action=predict

The predicted segmentation results will be in sampledir set in main.py, colored.

Use PixelDCL in other models

If you want to use pixel transposed convolutional layer in other models, just copy the file

utils/pixel_dcn.py

and use it in your model:


from pixel_dcn import pixel_dcl, ipixel_dcl, ipixel_cl


outputs = pixel_dcl(inputs, out_num, kernel_size, scope)

Currently, this version only support up-sampling by factor 2 such as from 2x2 to 4x4. We may provide more flexible version in the future.

Owner
Hongyang Gao
I am currently an Assistant Professor of Iowa State University. My research interest is deep learning.
Hongyang Gao
A nutritional label for food for thought.

Lexiscore As a first effort in tackling the theme of information overload in content consumption, I've been working on the lexiscore: a nutritional la

Paul Bricman 34 Nov 08, 2022
Trained on Simulated Data, Tested in the Real World

Trained on Simulated Data, Tested in the Real World

livox 43 Nov 18, 2022
Plenoxels: Radiance Fields without Neural Networks, Code release WIP

Plenoxels: Radiance Fields without Neural Networks Alex Yu*, Sara Fridovich-Keil*, Matthew Tancik, Qinhong Chen, Benjamin Recht, Angjoo Kanazawa UC Be

Alex Yu 2.3k Dec 30, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
ICLR2021 (Under Review)

Self-Supervised Time Series Representation Learning by Inter-Intra Relational Reasoning This repository contains the official PyTorch implementation o

Haoyi Fan 58 Dec 30, 2022
Official git for "CTAB-GAN: Effective Table Data Synthesizing"

CTAB-GAN This is the official git paper CTAB-GAN: Effective Table Data Synthesizing. The paper is published on Asian Conference on Machine Learning (A

30 Dec 26, 2022
Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Code for ICCV 2021 paper "HuMoR: 3D Human Motion Model for Robust Pose Estimation"

Davis Rempe 367 Dec 24, 2022
On-device speech-to-intent engine powered by deep learning

Rhino Made in Vancouver, Canada by Picovoice Rhino is Picovoice's Speech-to-Intent engine. It directly infers intent from spoken commands within a giv

Picovoice 510 Dec 30, 2022
efficient neural audio synthesis in the waveform domain

neural waveshaping synthesis real-time neural audio synthesis in the waveform domain paper • website • colab • audio by Ben Hayes, Charalampos Saitis,

Ben Hayes 169 Dec 23, 2022
Pretrained Pytorch face detection (MTCNN) and recognition (InceptionResnet) models

Face Recognition Using Pytorch Python 3.7 3.6 3.5 Status This is a repository for Inception Resnet (V1) models in pytorch, pretrained on VGGFace2 and

Tim Esler 3.3k Jan 04, 2023
Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Adapter-BERT: Parameter-Efficient Transfer Learning for NLP.

Google Research 340 Jan 03, 2023
Vision-and-Language Navigation in Continuous Environments using Habitat

Vision-and-Language Navigation in Continuous Environments (VLN-CE) Project Website — VLN-CE Challenge — RxR-Habitat Challenge Official implementations

Jacob Krantz 132 Jan 02, 2023
Pre-Training Graph Neural Networks for Cold-Start Users and Items Representation.

Pretrain-Recsys This is our Tensorflow implementation for our WSDM 2021 paper: Bowen Hao, Jing Zhang, Hongzhi Yin, Cuiping Li, Hong Chen. Pre-Training

30 Nov 14, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021)

HAIS Hierarchical Aggregation for 3D Instance Segmentation (ICCV 2021) by Shaoyu Chen, Jiemin Fang, Qian Zhang, Wenyu Liu, Xinggang Wang*. (*) Corresp

Hust Visual Learning Team 145 Jan 05, 2023
LSTMs (Long Short Term Memory) RNN for prediction of price trends

Price Prediction with Recurrent Neural Networks LSTMs BTC-USD price prediction with deep learning algorithm. Artificial Neural Networks specifically L

5 Nov 12, 2021
Unofficial reimplementation of ECAPA-TDNN for speaker recognition (EER=0.86 for Vox1_O when train only in Vox2)

Introduction This repository contains my unofficial reimplementation of the standard ECAPA-TDNN, which is the speaker recognition in VoxCeleb2 dataset

Tao Ruijie 277 Dec 31, 2022
Implementation for "Domain-Specific Bias Filtering for Single Labeled Domain Generalization"

DSBF Introduction This repository contains the implementation code for paper: Domain-Specific Bias Filtering for Single Labeled Domain Generalization

ScottYuan 7 Jan 05, 2023
FedGS: A Federated Group Synchronization Framework Implemented by LEAF-MX.

FedGS: Data Heterogeneity-Robust Federated Learning via Group Client Selection in Industrial IoT Preparation For instructions on generating data, plea

Lizonghang 9 Dec 22, 2022
Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning.

xTune Code for ACL2021 paper Consistency Regularization for Cross-Lingual Fine-Tuning. Environment DockerFile: dancingsoul/pytorch:xTune Install the f

Bo Zheng 42 Dec 09, 2022