Simulation code and tutorial for BBHnet training data

Overview

Simulation Dataset for BBHnet

NOTE: OLD README, UPDATE IN PROGRESS

We generate simulation dataset to train BBHnet, our deep learning framework for detection of compact binary coalescene (CBC) gravitational-wave (GW) signals .

Example

To generate a noise dataset, simply run generateRealNoise.py:

python generateRealNoise.py -t0 1186729980 -t1 1186734086 -t0-psd 1186729980 -t1-psd 1186734086
    -fs 1024 -fmin 20 -o test_noise.h5

To also add CBC signals, enable the flag -S and add the prior distribution file in Bilby format with -p

python generateRealNoise.py -t0 1186729980 -t1 1186734086 -t0-psd 1186729980 -t1-psd 1186734086
    -fs 1024 -fmin 20 -S -p config/priors/nonspin_BBH.prior -o test_signal.h5

A full list of generateRealNoise.py arguments can be found below:

usage: generateRealNoise.py [-h] -t0 FRAME_START -t1 FRAME_STOP -t0-psd FRAME_START_PSD -t1-psd FRAME_STOP_PSD -o OUTFILE [-S]
                            [-fs SAMPLE_RATE] [-fmin HIGH_PASS] [-T SAMPLE_DURATION] [-dt TIME_STEP] [-p PRIOR_FILE]
                            [--correlation-shift CORRELATION_SHIFT] [--min-trigger MIN_TRIGGER] [--max-trigger MAX_TRIGGER]
                            [-s SEED]

optional arguments:
  -h, --help            show this help message and exit
  -t0 FRAME_START, --frame-start FRAME_START
                        starting GPS time of strain
  -t1 FRAME_STOP, --frame-stop FRAME_STOP
                        stopping GPS time of strain
  -t0-psd FRAME_START_PSD, --frame-start-psd FRAME_START_PSD
                        starting GPS time of strain for PSD estimation
  -t1-psd FRAME_STOP_PSD, --frame-stop-psd FRAME_STOP_PSD
                        stopping GPS time of strain for PSD estimation
  -o OUTFILE, --outfile OUTFILE
                        path to write output file in HDF5 format
  -S, --signal          Enable to add GW signal on top of background noise
  -fs SAMPLE_RATE, --sample-rate SAMPLE_RATE
                        sampling rate of strain
  -fmin HIGH_PASS, --high-pass HIGH_PASS
                        frequency of highpass filter
  -T SAMPLE_DURATION, --sample-duration SAMPLE_DURATION
                        duration in seconds of each sample
  -dt TIME_STEP, --time-step TIME_STEP
                        time step size in seconds between consecutive samples
  -p PRIOR_FILE, --prior-file PRIOR_FILE
                        path to prior config file. Required for signal simulation
  --correlation-shift CORRELATION_SHIFT
                        if given, also compute the correlation with given shift value
  --min-trigger MIN_TRIGGER
                        mininum trigger time w.r.t to sample. must be within [0, sample_duration]
  --max-trigger MAX_TRIGGER
                        maximum trigger time w.r.t to sample. must be within [0, sample_duration]
  -s SEED, --seed SEED  random seed for reproducibility

Computational inteligence project on faces in the wild dataset

Table of Contents The general idea How these scripts work? Loading data Needed modules and global variables Parsing the arrays in dataset Extracting a

tooraj taraz 4 Oct 21, 2022
Devkit for 3D -- Some utils for 3D object detection based on Numpy and Pytorch

D3D Devkit for 3D: Some utils for 3D object detection and tracking based on Numpy and Pytorch Please consider siting my work if you find this library

Jacob Zhong 27 Jul 07, 2022
Real-time Joint Semantic Reasoning for Autonomous Driving

MultiNet MultiNet is able to jointly perform road segmentation, car detection and street classification. The model achieves real-time speed and state-

Marvin Teichmann 518 Dec 12, 2022
Demonstration of transfer of knowledge and generalization with distillation

Distilling-the-Knowledge-in-a-Neural-Network This is an implementation of a part of the paper "Distilling the Knowledge in a Neural Network" (https://

26 Nov 25, 2022
Learning to Predict Gradients for Semi-Supervised Continual Learning

Learning to Predict Gradients for Semi-Supervised Continual Learning Code for project: "Learning to Predict Gradients for Semi-Supervised Continual Le

Yan Luo 2 Mar 05, 2022
MetaBalance: High-Performance Neural Networks for Class-Imbalanced Data

This repository is the official PyTorch implementation of Meta-Balance. Find the paper on arxiv MetaBalance: High-Performance Neural Networks for Clas

Arpit Bansal 20 Oct 18, 2021
A simple pygame dino game which can also be trained and played by a NEAT KI

Dino Game AI Game The game itself was developed with the Pygame module pip install pygame You can also play it yourself by making the dino jump with t

Kilian Kier 7 Dec 05, 2022
Weakly Supervised Learning of Rigid 3D Scene Flow

Weakly Supervised Learning of Rigid 3D Scene Flow This repository provides code and data to train and evaluate a weakly supervised method for rigid 3D

Zan Gojcic 124 Dec 27, 2022
Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Code for C2-Matching (CVPR2021). Paper: Robust Reference-based Super-Resolution via C2-Matching.

C2-Matching (CVPR2021) This repository contains the implementation of the following paper: Robust Reference-based Super-Resolution via C2-Matching Yum

Yuming Jiang 151 Dec 26, 2022
Cross-media Structured Common Space for Multimedia Event Extraction (ACL2020)

Cross-media Structured Common Space for Multimedia Event Extraction Table of Contents Overview Requirements Data Quickstart Citation Overview The code

Manling Li 49 Nov 21, 2022
Person Re-identification

Person Re-identification Final project of Computer Vision Table of content Person Re-identification Table of content Students: Proposed method Dataset

Nguyễn Hoàng Quân 4 Jun 17, 2021
基于Paddlepaddle复现yolov5,支持PaddleDetection接口

PaddleDetection yolov5 https://github.com/Sharpiless/PaddleDetection-Yolov5 简介 PaddleDetection飞桨目标检测开发套件,旨在帮助开发者更快更好地完成检测模型的组建、训练、优化及部署等全开发流程。 PaddleD

36 Jan 07, 2023
This is an official implementation of the CVPR2022 paper "Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots".

Blind2Unblind: Self-Supervised Image Denoising with Visible Blind Spots Blind2Unblind Citing Blind2Unblind @inproceedings{wang2022blind2unblind, tit

demonsjin 58 Dec 06, 2022
PyTorch code of my WACV 2022 paper Improving Model Generalization by Agreement of Learned Representations from Data Augmentation

Improving Model Generalization by Agreement of Learned Representations from Data Augmentation (WACV 2022) Paper ArXiv Why it matters? When data augmen

Rowel Atienza 5 Mar 04, 2022
Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning

CSRL Implementation of CSRL from the AAAI2022 paper: Constraint Sampling Reinforcement Learning: Incorporating Expertise For Faster Learning Python: 3

4 Apr 14, 2022
Chinese license plate recognition

AgentCLPR 简介 一个基于 ONNXRuntime、AgentOCR 和 License-Plate-Detector 项目开发的中国车牌检测识别系统。 车牌识别效果 支持多种车牌的检测和识别(其中单层车牌识别效果较好): 单层车牌: [[[[373, 282], [69, 284],

AgentMaker 26 Dec 25, 2022
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022
kapre: Keras Audio Preprocessors

Kapre Keras Audio Preprocessors - compute STFT, ISTFT, Melspectrogram, and others on GPU real-time. Tested on Python 3.6 and 3.7 Why Kapre? vs. Pre-co

Keunwoo Choi 867 Dec 29, 2022
Bare bones use-case for deploying a containerized web app (built in streamlit) on AWS.

Containerized Streamlit web app This repository is featured in a 3-part series on Deploying web apps with Streamlit, Docker, and AWS. Checkout the blo

Collin Prather 62 Jan 02, 2023