Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials

Overview

Data Scientist Learning Plan

Demonstrate the breadth and depth of your data science skills by earning all of the Databricks Data Scientist credentials.

This learning path consists of several series of self-paced (E-Learning) courses and paid instructor-led courses. If you are interested in ILT, please be sure to search the course catalog for more information.

Learning Plan Structure

  • What is the Databricks Lakehouse Platform?

    This course (formerly Fundamentals of the Databricks Lakehouse Platform) is designed for everyone who is brand new to the Platform and wants to learn more about what it is, why it was developed, what it does, and the components that make it up.

    Our goal is that by the time you finish this course, you’ll have a better understanding of the Platform in general and be able to answer questions like: What is Databricks? Where does Databricks fit into my workflow? How have other customers been successful with Databricks?

    Learning objectives

    • Describe what the Databricks Lakehouse Platform is.
    • Explain the origins of the Lakehouse data management paradigm.
    • Outline fundamental problems that cause most enterprises to struggle with managing and making use of their data.
    • Identify the most popular components of the Databricks Lakehouse - Platform used by data practitioners, depending on their unique role.
    • Give examples of organizations that have used the Databricks Lakehouse Platform to streamline big data processing and analytics.
  • What is Delta Lake?

    Today, many organizations struggle with achieving successful big data and artificial intelligence (AI) projects. One of the biggest challenges they face is ensuring that quality, reliable data is available to data practitioners running these projects. After all, an organization that does not have reliable data will not succeed with AI. To help organizations bring structure, reliability, and performance to their data lakes, Databricks created Delta Lake.

    Delta Lake is an open format storage layer that sits on top of your organization’s data lake. It is the foundation of a cost-effective, highly scalable Lakehouse and is an integral part of the Databricks Lakehouse Platform.

    In this course (formerly Fundamentals of Delta Lake), we’ll break down the basics behind Delta Lake - what it does, how it works, and why it is valuable from a business perspective, to any organization with big data and AI projects.

    Learning objectives

    • Describe how Delta Lake fits into the Databricks Lakehouse Platform.
    • Explain the four elements encompassed by Delta Lake.
    • Summarize high-level Delta Lake functionality that helps organizations solve common challenges related to enterprise-scale data analytics.
    • Articulate examples of how organizations have employed Delta Lake on Databricks to improve business outcomes.
  • What is Databricks SQL?

    Databricks SQL offers SQL users a platform for querying, analyzing, and visualizing data. This course (formerly Fundamentals of Databricks SQL) guides users through the interface and demonstrates many of the tools and features available in the Databricks SQL interface.

    Learning objectives

    • Describe the basics of the Databricks SQL service.
    • Describe the benefits of using Databricks SQL to perform data analyses.
    • Describe how to complete a basic query, visualization, and dashboard workflow using Databricks SQL.
  • What is Databricks Machine Learning?

    Databricks Machine Learning offers data scientists and other machine learning practitioners a platform for completing and managing the end-to-end machine learning lifecycle. This course (formerly Fundamentals of Databricks Machine Learning) guides business leaders and practitioners through a basic overview of Databricks Machine Learning, the benefits of using Databricks Machine Learning, its fundamental components and functionalities, and examples of successful customer use.

    Learning objectives

    • Describe the basic overview of Databricks Machine Learning.
    • Identify how using Databricks Machine Learning benefits data science and machine learning teams.
    • Summarize the fundamental components and functionalities of Databricks Machine Learning.
    • Exemplify successful use cases of Databricks Machine Learning by real Databricks customers.
  • Fundamentals of the Databricks Lakehouse Platform Accreditation

  • Apache Spark Programming with Databricks

  • Certification Overview Course for the Databricks Certified Associate Developer for Apache Spark Exam

  • Getting Started with Databricks Machine Learning

  • Scaling Machine Learning Pipelines

Owner
Trung-Duy Nguyen
Trung-Duy Nguyen
A multi-platform GUI for bit-based analysis, processing, and visualization

A multi-platform GUI for bit-based analysis, processing, and visualization

Mahlet 529 Dec 19, 2022
PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams

PLStream: A Framework for Fast Polarity Labelling of Massive Data Streams Motivation When dataset freshness is critical, the annotating of high speed

4 Aug 02, 2022
A pipeline that creates consensus sequences from a Nanopore reads. I

A pipeline that creates consensus sequences from a Nanopore reads. It clusters reads that are similar to each other and creates a consensus that is then identified using BLAST.

Ada Madejska 2 May 15, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
Ejercicios Panda usando Pandas

Readme Below we add configuration details to locally test your application To co

1 Jan 22, 2022
This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

This project is the implementation template for HW 0 and HW 1 for both the programming and non-programming tracks

Donald F. Ferguson 4 Mar 06, 2022
Statistical Analysis 📈 focused on statistical analysis and exploration used on various data sets for personal and professional projects.

Statistical Analysis 📈 This repository focuses on statistical analysis and the exploration used on various data sets for personal and professional pr

Andy Pham 1 Sep 03, 2022
Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data

WeRateDogs Twitter Data from 2015 to 2017 Udacity - Data Analyst Nanodegree - Project 4 - Wrangle and Analyze Data Table of Contents Introduction Proj

Keenan Cooper 1 Jan 12, 2022
Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format

Finds, downloads, parses, and standardizes public bikeshare data into a standard pandas dataframe format.

Brady Law 2 Dec 01, 2021
🌍 Create 3d-printable STLs from satellite elevation data 🌏

mapa 🌍 Create 3d-printable STLs from satellite elevation data Installation pip install mapa Usage mapa uses numpy and numba under the hood to crunch

Fabian Gebhart 13 Dec 15, 2022
Maximum Covariance Analysis in Python

xMCA | Maximum Covariance Analysis in Python The aim of this package is to provide a flexible tool for the climate science community to perform Maximu

Niclas Rieger 39 Jan 03, 2023
Pandas and Dask test helper methods with beautiful error messages.

beavis Pandas and Dask test helper methods with beautiful error messages. test helpers These test helper methods are meant to be used in test suites.

Matthew Powers 18 Nov 28, 2022
Geospatial data-science analysis on reasons behind delay in Grab ride-share services

Grab x Pulis Detailed analysis done to investigate possible reasons for delay in Grab services for NUS Data Analytics Competition 2022, to be found in

Keng Hwee 6 Jun 07, 2022
TextDescriptives - A Python library for calculating a large variety of statistics from text

A Python library for calculating a large variety of statistics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistic

150 Dec 30, 2022
Performance analysis of predictive (alpha) stock factors

Alphalens Alphalens is a Python Library for performance analysis of predictive (alpha) stock factors. Alphalens works great with the Zipline open sour

Quantopian, Inc. 2.5k Jan 09, 2023
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
pyETT: Python library for Eleven VR Table Tennis data

pyETT: Python library for Eleven VR Table Tennis data Documentation Documentation for pyETT is located at https://pyett.readthedocs.io/. Installation

Tharsis Souza 5 Nov 19, 2022
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
CSV database for chihuahua (HUAHUA) blockchain transactions

super-fiesta Shamelessly ripped components from https://github.com/hodgerpodger/staketaxcsv - Thanks for doing all the hard work. This code does only

Arlene Macciaveli 1 Jan 07, 2022