A Time Series Library for Apache Spark

Overview

Flint: A Time Series Library for Apache Spark

The ability to analyze time series data at scale is critical for the success of finance and IoT applications based on Spark. Flint is Two Sigma's implementation of highly optimized time series operations in Spark. It performs truly parallel and rich analyses on time series data by taking advantage of the natural ordering in time series data to provide locality-based optimizations.

Flint is an open source library for Spark based around the TimeSeriesRDD, a time series aware data structure, and a collection of time series utility and analysis functions that use TimeSeriesRDDs. Unlike DataFrame and Dataset, Flint's TimeSeriesRDDs can leverage the existing ordering properties of datasets at rest and the fact that almost all data manipulations and analysis over these datasets respect their temporal ordering properties. It differs from other time series efforts in Spark in its ability to efficiently compute across panel data or on large scale high frequency data.

Documentation Status

Requirements

Dependency Version
Spark Version 2.3 and 2.4
Scala Version 2.12
Python Version 3.5 and above

How to install

Scala artifact is published in maven central:

https://mvnrepository.com/artifact/com.twosigma/flint

Python artifact is published in PyPi:

https://pypi.org/project/ts-flint

Note you will need both Scala and Python artifact to use Flint with PySpark.

How to build

To build from source:

Scala (in top-level dir):

sbt assemblyNoTest

Python (in python subdir):

python setup.py install

or

pip install .

Python bindings

The python bindings for Flint, including quickstart instructions, are documented at python/README.md. API documentation is available at http://ts-flint.readthedocs.io/en/latest/.

Getting Started

Starting Point: TimeSeriesRDD and TimeSeriesDataFrame

The entry point into all functionalities for time series analysis in Flint is TimeSeriesRDD (for Scala) and TimeSeriesDataFrame (for Python). In high level, a TimeSeriesRDD contains an OrderedRDD which could be used to represent a sequence of ordering key-value pairs. A TimeSeriesRDD uses Long to represent timestamps in nanoseconds since epoch as keys and InternalRows as values for OrderedRDD to represent a time series data set.

Create TimeSeriesRDD

Applications can create a TimeSeriesRDD from an existing RDD, from an OrderedRDD, from a DataFrame, or from a single csv file.

As an example, the following creates a TimeSeriesRDD from a gzipped CSV file with header and specific datetime format.

import com.twosigma.flint.timeseries.CSV
val tsRdd = CSV.from(
  sqlContext,
  "file://foo/bar/data.csv",
  header = true,
  dateFormat = "yyyyMMdd HH:mm:ss.SSS",
  codec = "gzip",
  sorted = true
)

To create a TimeSeriesRDD from a DataFrame, you have to make sure the DataFrame contains a column named "time" of type LongType.

import com.twosigma.flint.timeseries.TimeSeriesRDD
import scala.concurrent.duration._
val df = ... // A DataFrame whose rows have been sorted by their timestamps under "time" column
val tsRdd = TimeSeriesRDD.fromDF(dataFrame = df)(isSorted = true, timeUnit = MILLISECONDS)

One could also create a TimeSeriesRDD from a RDD[Row] or an OrderedRDD[Long, Row] by providing a schema, e.g.

import com.twosigma.flint.timeseries._
import scala.concurrent.duration._
val rdd = ... // An RDD whose rows have sorted by their timestamps
val tsRdd = TimeSeriesRDD.fromRDD(
  rdd,
  schema = Schema("time" -> LongType, "price" -> DoubleType)
)(isSorted = true,
  timeUnit = MILLISECONDS
)

It is also possible to create a TimeSeriesRDD from a dataset stored as parquet format file(s). The TimeSeriesRDD.fromParquet() function provides the option to specify which columns and/or the time range you are interested, e.g.

import com.twosigma.flint.timeseries._
import scala.concurrent.duration._
val tsRdd = TimeSeriesRDD.fromParquet(
  sqlContext,
  path = "hdfs://foo/bar/"
)(isSorted = true,
  timeUnit = MILLISECONDS,
  columns = Seq("time", "id", "price"),  // By default, null for all columns
  begin = "20100101",                    // By default, null for no boundary at begin
  end = "20150101"                       // By default, null for no boundary at end
)

Group functions

A group function is to group rows with nearby (or exactly the same) timestamps.

  • groupByCycle A function to group rows within a cycle, i.e. rows with exactly the same timestamps. For example,
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1000L 2.0
// 2000L 3.0
// 2000L 4.0
// 2000L 5.0

val results = priceTSRdd.groupByCycle()
// time  rows
// ------------------------------------------------
// 1000L [[1000L, 1.0], [1000L, 2.0]]
// 2000L [[2000L, 3.0], [2000L, 4.0], [2000L, 5.0]]
  • groupByInterval A function to group rows whose timestamps fall into an interval. Intervals could be defined by another TimeSeriesRDD. Its timestamps will be used to defined intervals, i.e. two sequential timestamps define an interval. For example,
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1500L 2.0
// 2000L 3.0
// 2500L 4.0

val clockTSRdd = ...
// A TimeSeriesRDD with only column "time"
// time
// -----
// 1000L
// 2000L
// 3000L

val results = priceTSRdd.groupByInterval(clockTSRdd)
// time  rows
// ----------------------------------
// 1000L [[1000L, 1.0], [1500L, 2.0]]
// 2000L [[2000L, 3.0], [2500L, 4.0]]
  • addWindows For each row, this function adds a new column whose value for a row is a list of rows within its window.
val priceTSRdd = ...
// A TimeSeriesRDD with columns "time" and "price"
// time  price
// -----------
// 1000L 1.0
// 1500L 2.0
// 2000L 3.0
// 2500L 4.0

val result = priceTSRdd.addWindows(Window.pastAbsoluteTime("1000ns"))
// time  price window_past_1000ns
// ------------------------------------------------------
// 1000L 1.0   [[1000L, 1.0]]
// 1500L 2.0   [[1000L, 1.0], [1500L, 2.0]]
// 2000L 3.0   [[1000L, 1.0], [1500L, 2.0], [2000L, 3.0]]
// 2500L 4.0   [[1500L, 2.0], [2000L, 3.0], [2500L, 4.0]]

Temporal Join Functions

A temporal join function is a join function defined by a matching criteria over time. A tolerance in temporal join matching criteria specifies how much it should look past or look futue.

  • leftJoin A function performs the temporal left-join to the right TimeSeriesRDD, i.e. left-join using inexact timestamp matches. For each row in the left, append the most recent row from the right at or before the same time. An example to join two TimeSeriesRDDs is as follows.
val leftTSRdd = ...
val rightTSRdd = ...
val result = leftTSRdd.leftJoin(rightTSRdd, tolerance = "1day")
  • futureLeftJoin A function performs the temporal future left-join to the right TimeSeriesRDD, i.e. left-join using inexact timestamp matches. For each row in the left, appends the closest future row from the right at or after the same time.
val result = leftTSRdd.futureLeftJoin(rightTSRdd, tolerance = "1day")

Summarize Functions

Summarize functions are the functions to apply summarizer(s) to rows within a certain period, like cycle, interval, windows, etc.

  • summarizeCycles A function computes aggregate statistics of rows that are within a cycle, i.e. rows share a timestamp.
val volTSRdd = ...
// A TimeSeriesRDD with columns "time", "id", and "volume"
// time  id volume
// ------------
// 1000L 1  100
// 1000L 2  200
// 2000L 1  300
// 2000L 2  400

val result = volTSRdd.summarizeCycles(Summary.sum("volume"))
// time  volume_sum
// ----------------
// 1000L 300
// 2000L 700

Similarly, we could summarize over intervals, windows, or the whole time series data set. See

  • summarizeIntervals
  • summarizeWindows
  • addSummaryColumns

One could check timeseries.summarize.summarizer for different kinds of summarizer(s), like ZScoreSummarizer, CorrelationSummarizer, NthCentralMomentSummarizer etc.

Contributing

In order to accept your code contributions, please fill out the appropriate Contributor License Agreement in the cla folder and submit it to [email protected].

Disclaimer

Apache Spark is a trademark of The Apache Software Foundation. The Apache Software Foundation is not affiliated, endorsed, connected, sponsored or otherwise associated in any way to Two Sigma, Flint, or this website in any manner.

© Two Sigma Open Source, LLC

Owner
Two Sigma
Two Sigma is a financial sciences company. Our scientists use rigorous inquiry, data analysis, and invention to solve tough challenges across financial services
Two Sigma
Reggy - Regressions with arbitrarily complex regularization terms

reggy Regressions with arbitrarily complex regularization terms. Currently suppo

Kim 1 Jan 20, 2022
Confidence intervals for scikit-learn forest algorithms

forest-confidence-interval: Confidence intervals for Forest algorithms Forest algorithms are powerful ensemble methods for classification and regressi

272 Dec 01, 2022
QML: A Python Toolkit for Quantum Machine Learning

QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.

176 Dec 09, 2022
MIT-Machine Learning with Python–From Linear Models to Deep Learning

MIT-Machine Learning with Python–From Linear Models to Deep Learning | One of the 5 courses in MIT MicroMasters in Statistics & Data Science Welcome t

2 Aug 23, 2022
Class-imbalanced / Long-tailed ensemble learning in Python. Modular, flexible, and extensible

IMBENS: Class-imbalanced Ensemble Learning in Python Language: English | Chinese/中文 Links: Documentation | Gallery | PyPI | Changelog | Source | Downl

Zhining Liu 176 Jan 04, 2023
LinearRegression2 Tvads and CarSales

LinearRegression2_Tvads_and_CarSales This project infers the insight that how the TV ads for cars and car Sales are being linked with each other. It i

Ashish Kumar Yadav 1 Dec 29, 2021
Meerkat provides fast and flexible data structures for working with complex machine learning datasets.

Meerkat makes it easier for ML practitioners to interact with high-dimensional, multi-modal data. It provides simple abstractions for data inspection, model evaluation and model training supported by

Robustness Gym 115 Dec 12, 2022
🎛 Distributed machine learning made simple.

🎛 lazycluster Distributed machine learning made simple. Use your preferred distributed ML framework like a lazy engineer. Getting Started • Highlight

Machine Learning Tooling 44 Nov 27, 2022
Add built-in support for quaternions to numpy

Quaternions in numpy This Python module adds a quaternion dtype to NumPy. The code was originally based on code by Martin Ling (which he wrote with he

Mike Boyle 531 Dec 28, 2022
Repository for DCA0305, an undergraduate course about Machine Learning Workflows and Pipelines

Federal University of Rio Grande do Norte Technology Center Department of Computer Engineering and Automation Machine Learning Based Systems Design Re

Ivanovitch Silva 81 Oct 18, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Automated Time Series Forecasting

AutoTS AutoTS is a time series package for Python designed for rapidly deploying high-accuracy forecasts at scale. There are dozens of forecasting mod

Colin Catlin 652 Jan 03, 2023
Predicting diabetes over a five year period using logistic regression and the Pima First-Nation dataset

Diabetes This script uses the Pima First Nations dataset to create a model to predict whether or not an individual will develop Diabetes Mellitus Type

1 Mar 28, 2022
Tutorial for Decision Threshold In Machine Learning.

Decision-Threshold-ML Tutorial for improve skills: 'Decision Threshold In Machine Learning' (from GeeksforGeeks) by Marcus Mariano For more informatio

0 Jan 20, 2022
Uplift modeling and causal inference with machine learning algorithms

Disclaimer This project is stable and being incubated for long-term support. It may contain new experimental code, for which APIs are subject to chang

Uber Open Source 3.7k Jan 07, 2023
Automatic extraction of relevant features from time series:

tsfresh This repository contains the TSFRESH python package. The abbreviation stands for "Time Series Feature extraction based on scalable hypothesis

Blue Yonder GmbH 7k Jan 06, 2023
Time-series momentum for momentum investing strategy

Time-series-momentum Time-series momentum strategy. You can use the data_analysis.py file to find out the best trigger and window for a given asset an

Victor Caldeira 3 Jun 18, 2022
High performance, easy-to-use, and scalable machine learning (ML) package, including linear model (LR), factorization machines (FM), and field-aware factorization machines (FFM) for Python and CLI interface.

What is xLearn? xLearn is a high performance, easy-to-use, and scalable machine learning package that contains linear model (LR), factorization machin

Chao Ma 3k Jan 08, 2023
This is a curated list of medical data for machine learning

Medical Data for Machine Learning This is a curated list of medical data for machine learning. This list is provided for informational purposes only,

Andrew L. Beam 5.4k Dec 26, 2022
An MLOps framework to package, deploy, monitor and manage thousands of production machine learning models

Seldon Core: Blazing Fast, Industry-Ready ML An open source platform to deploy your machine learning models on Kubernetes at massive scale. Overview S

Seldon 3.5k Jan 01, 2023