My capstone project for Udacity's Machine Learning Nanodegree

Overview

MLND-Capstone

My capstone project for Udacity's Machine Learning Nanodegree

Lane Detection with Deep Learning

In this project, I use a deep learning-based approach to improve upon lane detection. My final model uses a fully convolutional neural network to output an image of a predicted lane.

Please see my final Capstone Project Report here.

Also, see my original capstone proposal here.

Lastly, check out the wiki page in this repository to see some more of my steps along the way. The separate "early_steps" branch contains earlier code for previous versions of the neural network as well as files that can extract data for training and perform some automatic labeling.

See an early version of the model detecting lane lines with perspective transformed images here. An early version of my model trained without perspective transformed images, i.e. regular road images, can be seen here!

Lastly, with the finalized fully convolutional model, there are a couple additional videos I made. The first, which is the same video from the above two, has between 10-20% of the frames fed into the mode, as can be seen here. Additionally, a video made from the Challenge Video from Udacity's Advanced Lane Lines project in the SDCND, where the neural network had never seen the video before, can be seen here. The model performs fairly robustly on the never-before-seen video, with the only hitch due to the large light difference as it goes under the overpass.

An additional video can be seen at this Dropbox link.

Dataset

For fully convolutional network

You can download the full training set of images I used here and the full set of 'labels' (which are just the 'G' channel from an RGB image of a re-drawn lane with an extra dimension added to make use in Keras easier) here (157 MB).

Images with coefficient labels

If you just want the original training images with no flips or rotations (downsized to 80x160x3) you can find them here. You can also find the related coefficient labels (i.e. not the drawn lane labels, but the cofficients for a polynomial line) here.

Software Requirements

You can use this conda environment file. In the command line, use conda env create -f lane_environment.yml and then source activate lane_environment (or just activate with the environment name on Windows) to use the environment.

Key Files

Although I have included many of the python files I created to help process my images and various prototype neural networks in the "early_steps" branch, the key files are:

  • fully_conv_NN.py - Assuming you have downloaded the training images and labels above, this is the fully convolutional neural network to train using that data.
  • full_CNN_model.h5 - These are the final outputs from the above CNN. Note that if you train the file above the originals here will be overwritten! These get fed into the below.
  • draw_detected_lanes.py - Using the trained model and an input video, this predicts the lane, averages across 5 frames, and returns the original video with predicted lane lines drawn onto it. Note that it is currently set up to use the basic video from Udacity's SDCND Advanced Lane Lines project here, but the code at the end can be changed to accept different input videos.

Training Image Statistics

  • 21,054 total images gathered from 12 videos (a mix of different times of day, weather, traffic, and road curvatures)
  • 17.4% were clear night driving, 16.4% were rainy morning driving, and 66.2% were cloudy afternoon driving
  • 26.5% were straight or mostly straight roads, 30.2% were a mix or moderate curves, and 43.3% were very curvy roads
  • The roads also contain difficult areas such as construction and intersections
  • 14,235 of the total that were usable of those gathered (mainly due to blurriness, hidden lines, etc.)
  • 1,420 total images originally extracted from those to account for time series (1 in every 10)
  • 227 of the 1,420 unusable due to the limits of the CV-based model used to label (down from 446 due to various improvements made to the original model) for a total of 1,193 images
  • Another 568 images (of 1,636 pulled in) gathered from more curvy lines to assist in gaining a wider distribution of labels (1 in every 5 from the more curved-lane videos; from 8,187 frames)
  • In total, 1,761 original images
  • I pulled in the easier project video from Udacity's Advanced Lane Lines project (to help the model learn an additional camera's distortion) - of 1,252 frames, I used 1 in 5 for 250 total, 217 of which were usable for training
  • A total of 1,978 actual images used between my collections and the one Udacity video
  • After checking histograms for each coefficient of each label for distribution, I created an additional 4,404 images using small rotations of the images outside the very center of the original distribution of images. This was done in three rounds of slowly moving outward from the center of the data (so those further out from the center of the distribution were done multiple times). 6,382 images existed at this point.
  • Finally, I added horizontal flips of each and every road image and its corresponding label, which doubled the total images. All in all, there were a total of 12,764 images for training.
Owner
Michael Virgo
Software Engineer
Michael Virgo
Laporan Proyek Machine Learning - Azhar Rizki Zulma

Laporan Proyek Machine Learning - Azhar Rizki Zulma Project Overview Domain proyek yang dipilih dalam proyek machine learning ini adalah mengenai hibu

Azhar Rizki Zulma 6 Mar 12, 2022
Falken provides developers with a service that allows them to train AI that can play their games

Falken provides developers with a service that allows them to train AI that can play their games. Unlike traditional RL frameworks that learn through rewards or batches of offline training, Falken is

Google Research 223 Jan 03, 2023
Estudos e projetos feitos com PySpark.

PySpark (Spark com Python) PySpark é uma biblioteca Spark escrita em Python, e seu objetivo é permitir a análise interativa dos dados em um ambiente d

Karinne Cristina 54 Nov 06, 2022
Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking and Jupyter notebook analysis.

sklearn-evaluation Machine learning model evaluation made easy: plots, tables, HTML reports, experiment tracking, and Jupyter notebook analysis. Suppo

Eduardo Blancas 354 Dec 31, 2022
Continuously evaluated, functional, incremental, time-series forecasting

timemachines Autonomous, univariate, k-step ahead time-series forecasting functions assigned Elo ratings You can: Use some of the functionality of a s

Peter Cotton 343 Jan 04, 2023
Machine Learning University: Accelerated Natural Language Processing Class

Machine Learning University: Accelerated Natural Language Processing Class This repository contains slides, notebooks and datasets for the Machine Lea

AWS Samples 2k Jan 01, 2023
Code Repository for Machine Learning with PyTorch and Scikit-Learn

Code Repository for Machine Learning with PyTorch and Scikit-Learn

Sebastian Raschka 1.4k Jan 03, 2023
pywFM is a Python wrapper for Steffen Rendle's factorization machines library libFM

pywFM pywFM is a Python wrapper for Steffen Rendle's libFM. libFM is a Factorization Machine library: Factorization machines (FM) are a generic approa

João Ferreira Loff 251 Sep 23, 2022
Neighbourhood Retrieval (Nearest Neighbours) with Distance Correlation.

Neighbourhood Retrieval with Distance Correlation Assign Pseudo class labels to datapoints in the latent space. NNDC is a slim wrapper around FAISS. N

The Learning Machines 1 Jan 16, 2022
Pandas DataFrames and Series as Interactive Tables in Jupyter

Pandas DataFrames and Series as Interactive Tables in Jupyter Star Turn pandas DataFrames and Series into interactive datatables in both your notebook

Marc Wouts 364 Jan 04, 2023
a distributed deep learning platform

Apache SINGA Distributed deep learning system http://singa.apache.org Quick Start Installation Examples Issues JIRA tickets Code Analysis: Mailing Lis

The Apache Software Foundation 2.7k Jan 05, 2023
Kalman filter library

The kalman filter framework described here is an incredibly powerful tool for any optimization problem, but particularly for visual odometry, sensor fusion localization or SLAM.

comma.ai 276 Jan 01, 2023
Implementations of Machine Learning models, Regularizers, Optimizers and different Cost functions.

Linear Models Implementations of LinearRegression, LassoRegression and RidgeRegression with appropriate Regularizers and Optimizers. Linear Regression

Keivan Ipchi Hagh 1 Nov 22, 2021
Anomaly Detection and Correlation library

luminol Overview Luminol is a light weight python library for time series data analysis. The two major functionalities it supports are anomaly detecti

LinkedIn 1.1k Jan 01, 2023
A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

A mindmap summarising Machine Learning concepts, from Data Analysis to Deep Learning.

Daniel Formoso 5.7k Dec 30, 2022
Library of Stan Models for Survival Analysis

survivalstan: Survival Models in Stan author: Jacki Novik Overview Library of Stan Models for Survival Analysis Features: Variety of standard survival

Hammer Lab 122 Jan 06, 2023
Flightfare-Prediction - It is a Flightfare Prediction Web Application Using Machine learning,Python and flask

Flight_fare-Prediction It is a Flight_fare Prediction Web Application Using Machine learning,Python and flask Using Machine leaning i have created a F

1 Dec 06, 2022
Bodywork deploys machine learning projects developed in Python, to Kubernetes.

Bodywork deploys machine learning projects developed in Python, to Kubernetes. It helps you to: serve models as microservices execute batch jobs run r

Bodywork Machine Learning 409 Jan 01, 2023
CD) in machine learning projectsImplementing continuous integration & delivery (CI/CD) in machine learning projects

CML with cloud compute This repository contains a sample project using CML with Terraform (via the cml-runner function) to launch an AWS EC2 instance

Iterative 19 Oct 03, 2022
🚪✊Knock Knock: Get notified when your training ends with only two additional lines of code

Knock Knock A small library to get a notification when your training is complete or when it crashes during the process with two additional lines of co

Hugging Face 2.5k Jan 07, 2023