FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

Related tags

Deep LearningFaceQgen
Overview

FaceQgen

FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment

This repository is based on the paper: "FaceQgen: Semi-Supervised Deep Learning for Face Image Quality Assessment" presented in the IEEE International Conference on Automatic Face and Gesture Recognition 2021.

FaceQgen is a a face quality assessment method based on GANs capable of inferring quality directly from face images. It avoids using any type of numerical labelling of the training images thanks to following a semi-supervised learning approach without the need of a specific measurement of quality for its groundtruth apart from selecting a single high quality image per subject.

FaceQgen performs face image restoration, returning a high quality image (frontal pose, homogeneous background, etc.) when receiving a face image of unknown quality. We use three different similarity measures between the original and the restored images as quality measures: SSIM,MSE, and the output of the Discriminator of FaceQgen. Faces of high quality will experience less transformations during restoration, so the similarity values obtained in those cases will be higher than the ones obtained from low quality images.

The training of FaceQgen was done using the SCFace database.

-- Configuring environment in Windows:

  1. Installing Conda: https://conda.io/projects/conda/en/latest/user-guide/install/windows.html

Update Conda in the default environment:

conda update conda
conda upgrade --all

Create a new environment:

conda create -n [env-name]

Activate the environment:

conda activate [env-name]
  1. Installing dependencies in your environment:

Install Tensorflow and all its dependencies:

pip install tensorflow

Install Keras:

pip install keras

Install OpenCV:

conda install -c conda-forge opencv
  1. If you want to use a CUDA compatible GPU for faster predictions:

You will need CUDA and the Nvidia drivers installed in your computer: https://docs.nvidia.com/deeplearning/sdk/cudnn-install/

Then, install the GPU version of Tensorflow:

pip install tensorflow-gpu

-- Using FaceQgen for predicting scores:

  1. Download or clone the repository.
  2. Due to the size of the video example, please download one of the the FaceQgen pretrained model and place the downloaded .h5 file it in the /src folder:
  1. Edit and run the FaceQgen_obtainscores_Keras.py script.
    • You will need to change the folder from which the script will try to charge the face images. It is src/Samples_cropped by default.
    • The best results will be obtained when the input images have been cropped just to the zone of the detected face. In our experiments we have used the MTCNN face detector from here, but other detector can be used.
    • FaceQgen will ouput a quality score for each input image. All the scores will are saved in a .txt file into the src folder. This file contain each filename with its associated quality metric.
Owner
Javier Hernandez-Ortega
M.Sc. in Computer Science & Electrical Engineering from Universidad Autonoma de Madrid. PhD student.
Javier Hernandez-Ortega
Experiments with Fourier layers on simulation data.

Factorized Fourier Neural Operators This repository contains the code to reproduce the results in our NeurIPS 2021 ML4PS workshop paper, Factorized Fo

Alasdair Tran 57 Dec 25, 2022
Source code for our paper "Do Not Trust Prediction Scores for Membership Inference Attacks"

Do Not Trust Prediction Scores for Membership Inference Attacks Abstract: Membership inference attacks (MIAs) aim to determine whether a specific samp

<a href=[email protected]"> 3 Oct 25, 2022
A different spin on dataclasses.

dataklasses Dataklasses is a library that allows you to quickly define data classes using Python type hints. Here's an example of how you use it: from

David Beazley 752 Nov 18, 2022
SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

SalGAN: Visual Saliency Prediction with Adversarial Networks Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayr

Image Processing Group - BarcelonaTECH - UPC 347 Nov 22, 2022
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
ROS support for Velodyne 3D LIDARs

Overview Velodyne1 is a collection of ROS2 packages supporting Velodyne high definition 3D LIDARs3. Warning: The master branch normally contains code

ROS device drivers 543 Dec 30, 2022
Learning Synthetic Environments and Reward Networks for Reinforcement Learning

Learning Synthetic Environments and Reward Networks for Reinforcement Learning We explore meta-learning agent-agnostic neural Synthetic Environments (

AutoML-Freiburg-Hannover 16 Sep 02, 2022
Code accompanying the paper "Knowledge Base Completion Meets Transfer Learning"

Knowledge Base Completion Meets Transfer Learning This code accompanies the paper Knowledge Base Completion Meets Transfer Learning published at EMNLP

14 Nov 27, 2022
Implementation of GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation (ICLR 2022).

GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation [OpenReview] [arXiv] [Code] The official implementation of GeoDiff: A Geome

Minkai Xu 155 Dec 26, 2022
Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language (NeurIPS 2021)

VRDP (NeurIPS 2021) Dynamic Visual Reasoning by Learning Differentiable Physics Models from Video and Language Mingyu Ding, Zhenfang Chen, Tao Du, Pin

Mingyu Ding 36 Sep 20, 2022
Beyond imagenet attack (accepted by ICLR 2022) towards crafting adversarial examples for black-box domains.

Beyond ImageNet Attack: Towards Crafting Adversarial Examples for Black-box Domains (ICLR'2022) This is the Pytorch code for our paper Beyond ImageNet

Alibaba-AAIG 37 Nov 23, 2022
PyTorch implementation of a collections of scalable Video Transformer Benchmarks.

PyTorch implementation of Video Transformer Benchmarks This repository is mainly built upon Pytorch and Pytorch-Lightning. We wish to maintain a colle

Xin Ma 156 Jan 08, 2023
AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models

AI-UPV at IberLEF-2021 EXIST task: Sexism Prediction in Spanish and English Tweets Using Monolingual and Multilingual BERT and Ensemble Models Descrip

Angel de Paula 1 Jun 08, 2022
Deep learned, hardware-accelerated 3D object pose estimation

Isaac ROS Pose Estimation Overview This repository provides NVIDIA GPU-accelerated packages for 3D object pose estimation. Using a deep learned pose e

NVIDIA Isaac ROS 41 Dec 18, 2022
This project aims at providing a concise, easy-to-use, modifiable reference implementation for semantic segmentation models using PyTorch.

Semantic Segmentation on PyTorch (include FCN, PSPNet, Deeplabv3, Deeplabv3+, DANet, DenseASPP, BiSeNet, EncNet, DUNet, ICNet, ENet, OCNet, CCNet, PSANet, CGNet, ESPNet, LEDNet, DFANet)

2.4k Jan 08, 2023
The world's largest toxicity dataset.

The Toxicity Dataset by Surge AI Saving the internet is fun. Combing through thousands of online comments to build a toxicity dataset isn't. That's wh

Surge AI 134 Dec 19, 2022
Quantum-enhanced transformer neural network

Example of a Quantum-enhanced transformer neural network Get the code: git clone https://github.com/rdisipio/qtransformer.git cd qtransformer Create

Riccardo Di Sipio 61 Nov 08, 2022
Rethinking Transformer-based Set Prediction for Object Detection

Rethinking Transformer-based Set Prediction for Object Detection Here are the code for the ICCV paper. The code is adapted from Detectron2 and AdelaiD

Zhiqing Sun 62 Dec 03, 2022
Official source code to CVPR'20 paper, "When2com: Multi-Agent Perception via Communication Graph Grouping"

When2com: Multi-Agent Perception via Communication Graph Grouping This is the PyTorch implementation of our paper: When2com: Multi-Agent Perception vi

34 Nov 09, 2022
Contains modeling practice materials and homework for the Computational Neuroscience course at Okinawa Institute of Science and Technology

A310 Computational Neuroscience - Okinawa Institute of Science and Technology, 2022 This repository contains modeling practice materials and homework

Sungho Hong 1 Jan 24, 2022