Distributed Computing for AI Made Simple

Overview

build

drawing

Project Home   Blog   Documents   Paper   Media Coverage

Join Fiber users email list [email protected]

Fiber

Distributed Computing for AI Made Simple

This project is experimental and the APIs are not considered stable.

Fiber is a Python distributed computing library for modern computer clusters.

  • It is easy to use. Fiber allows you to write programs that run on a computer cluster level without the need to dive into the details of computer cluster.
  • It is easy to learn. Fiber provides the same API as Python's standard multiprocessing library that you are familiar with. If you know how to use multiprocessing, you can program a computer cluster with Fiber.
  • It is fast. Fiber's communication backbone is built on top of Nanomsg which is a high-performance asynchronous messaging library to allow fast and reliable communication.
  • It doesn't need deployment. You run it as the same way as running a normal application on a computer cluster and Fiber handles the rest for you.
  • It it reliable. Fiber has built-in error handling when you are running a pool of workers. Users can focus on writing the actual application code instead of dealing with crashed workers.

Originally, it was developed to power large scale parallel scientific computation projects like POET and it has been used to power similar projects within Uber.

Installation

pip install fiber

Check here for details.

Quick Start

Hello Fiber

To use Fiber, simply import it in your code and it works very similar to multiprocessing.

import fiber

if __name__ == '__main__':
    fiber.Process(target=print, args=('Hello, Fiber!',)).start()

Note that if __name__ == '__main__': is necessary because Fiber uses spawn method to start new processes. Check here for details.

Let's take look at another more complex example:

Estimating Pi

import fiber
import random

@fiber.meta(cpu=1)
def inside(p):
    x, y = random.random(), random.random()
    return x * x + y * y < 1

def main():
    NUM_SAMPLES = int(1e6)
    pool = fiber.Pool(processes=4)
    count = sum(pool.map(inside, range(0, NUM_SAMPLES)))
    print("Pi is roughly {}".format(4.0 * count / NUM_SAMPLES))

if __name__ == '__main__':
    main()

Fiber implements most of multiprocessing's API including Process, SimpleQueue, Pool, Pipe, Manager and it has its own extension to the multiprocessing's API to make it easy to compose large scale distributed applications. For the detailed API guild, check out here.

Running on a Kubernetes cluster

Fiber also has native support for computer clusters. To run the above example on Kubernetes, fiber provided a convenient command line tool to manage the workflow.

Assume you have a working docker environment locally and have finished configuring Google Cloud SDK. Both gcloud and kubectl are available locally. Then you can start by writing a Dockerfile which describes the running environment. An example Dockerfile looks like this:

# example.docker
FROM python:3.6-buster
ADD examples/pi_estimation.py /root/pi_estimation.py
RUN pip install fiber

Build an image and launch your job

fiber run -a python3 /root/pi_estimation.py

This command will look for local Dockerfile and build a docker image and push it to your Google Container Registry . It then launches the main job which contains your code and runs the command python3 /root/pi_estimation.py inside your job. Once the main job is running, it will start 4 subsequent jobs on the cluster and each of them is a Pool worker.

Supported platforms

  • Operating system: Linux
  • Python: 3.6+
  • Supported cluster management systems:
    • Kubernetes (Tested with Google Kubernetes Engine on Google cloud)

We are interested in supporting other cluster management systems like Slurm, if you want to contribute to it please let us know.

Check here for details.

Documentation

The documentation, including method/API references, can be found here.

Testing

Install test dependencies. You'll also need to make sure docker is available on the testing machine.

$ pip install -e .[test]

Run tests

$ make test

Contributing

Please read our code of conduct before you contribute! You can find details for submitting pull requests in the CONTRIBUTING.md file. Issue template.

Versioning

We document versions and changes in our changelog - see the CHANGELOG.md file for details.

License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

Cite Fiber

@misc{zhi2020fiber,
    title={Fiber: A Platform for Efficient Development and Distributed Training for Reinforcement Learning and Population-Based Methods},
    author={Jiale Zhi and Rui Wang and Jeff Clune and Kenneth O. Stanley},
    year={2020},
    eprint={2003.11164},
    archivePrefix={arXiv},
    primaryClass={cs.LG}
}

Acknowledgments

  • Special thanks to Piero Molino for designing the logo for Fiber
Owner
Uber Open Source
Open Source Software at Uber
Uber Open Source
pymc-learn: Practical Probabilistic Machine Learning in Python

pymc-learn: Practical Probabilistic Machine Learning in Python Contents: Github repo What is pymc-learn? Quick Install Quick Start Index What is pymc-

pymc-learn 196 Dec 07, 2022
XGBoost + Optuna

AutoXGB XGBoost + Optuna: no brainer auto train xgboost directly from CSV files auto tune xgboost using optuna auto serve best xgboot model using fast

abhishek thakur 517 Dec 31, 2022
Simple linear model implementations from scratch.

Hand Crafted Models Simple linear model implementations from scratch. Table of contents Overview Project Structure Getting started Citing this project

Jonathan Sadighian 2 Sep 13, 2021
PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors.

PyNNDescent PyNNDescent is a Python nearest neighbor descent for approximate nearest neighbors. It provides a python implementation of Nearest Neighbo

Leland McInnes 699 Jan 09, 2023
A Lightweight Hyperparameter Optimization Tool 🚀

The mle-hyperopt package provides a simple and intuitive API for hyperparameter optimization of your Machine Learning Experiment (MLE) pipeline.

Robert Lange 137 Dec 02, 2022
scikit-learn: machine learning in Python

scikit-learn is a Python module for machine learning built on top of SciPy and is distributed under the 3-Clause BSD license. The project was started

neurodata 3 Dec 16, 2022
Microsoft Machine Learning for Apache Spark

Microsoft Machine Learning for Apache Spark MMLSpark is an ecosystem of tools aimed towards expanding the distributed computing framework Apache Spark

Microsoft Azure 3.9k Dec 30, 2022
pure-predict: Machine learning prediction in pure Python

pure-predict speeds up and slims down machine learning prediction applications. It is a foundational tool for serverless inference or small batch prediction with popular machine learning frameworks l

Ibotta 84 Dec 29, 2022
This is my implementation on the K-nearest neighbors algorithm from scratch using Python

K Nearest Neighbors (KNN) algorithm In this Machine Learning world, there are various algorithms designed for classification problems such as Logistic

sonny1902 1 Jan 08, 2022
A statistical library designed to fill the void in Python's time series analysis capabilities, including the equivalent of R's auto.arima function.

pmdarima Pmdarima (originally pyramid-arima, for the anagram of 'py' + 'arima') is a statistical library designed to fill the void in Python's time se

alkaline-ml 1.3k Dec 22, 2022
AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications.

AutoTabular automates machine learning tasks enabling you to easily achieve strong predictive performance in your applications. With just a few lines of code, you can train and deploy high-accuracy m

Robin 55 Dec 27, 2022
Painless Machine Learning for python based on scikit-learn

PlainML Painless Machine Learning Library for python based on scikit-learn. Install pip install plainml Example from plainml import KnnModel, load_ir

1 Aug 06, 2022
Empyrial is a Python-based open-source quantitative investment library dedicated to financial institutions and retail investors

By Investors, For Investors. Want to read this in Chinese? Click here Empyrial is a Python-based open-source quantitative investment library dedicated

Santosh 640 Dec 31, 2022
Formulae is a Python library that implements Wilkinson's formulas for mixed-effects models.

formulae formulae is a Python library that implements Wilkinson's formulas for mixed-effects models. The main difference with other implementations li

34 Dec 21, 2022
Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared

Feature-Engineering Required for a machine learning pipeline data preprocessing and variable engineering script needs to be prepared. When the dataset

kemalgunay 5 Apr 21, 2022
A Python step-by-step primer for Machine Learning and Optimization

early-ML Presentation General Machine Learning tutorials A Python step-by-step primer for Machine Learning and Optimization This github repository gat

Dimitri Bettebghor 8 Dec 01, 2022
WAGMA-SGD is a decentralized asynchronous SGD for distributed deep learning training based on model averaging.

WAGMA-SGD is a decentralized asynchronous SGD based on wait-avoiding group model averaging. The synchronization is relaxed by making the collectives externally-triggerable, namely, a collective can b

Shigang Li 6 Jun 18, 2022
DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning.

DirectML is a high-performance, hardware-accelerated DirectX 12 library for machine learning. DirectML provides GPU acceleration for common machine learning tasks across a broad range of supported ha

Microsoft 1.1k Jan 04, 2023
Price forecasting of SGB and IRFC Bonds and comparing there returns

Project_Bonds Project Title : Price forecasting of SGB and IRFC Bonds and comparing there returns. Introduction of the Project The 2008-09 global fina

Tishya S 1 Oct 28, 2021
CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

CinnaMon is a Python library which offers a number of tools to detect, explain, and correct data drift in a machine learning system

Zelros 67 Dec 28, 2022