Repository for the paper "Online Domain Adaptation for Occupancy Mapping", RSS 2020

Overview

RSS 2020 - Online Domain Adaptation for Occupancy Mapping

Repository for the paper "Online Domain Adaptation for Occupancy Mapping", Robotics: Science and Systems (RSS), 2020

Anthony Tompkins*, Ransalu Senanayake*, and Fabio Ramos

Modeling uncertainity in real-time is essential for robots to operate in unknown environments. In this paper, we consider the problem of estimating unceratinity in occupancy in an online fashion. Rather than learning parameters from scratch for every new training batch in an online training setting, can we adapt the parameters that we have already learned to the new training batch? In this paper, we use the theory of Optimal Transport to determine the optimal way to morph source LIDAR beams to target LIDAR beams. This transformation allows us to transfer associated model parameters from a dictionary of source domains to a target domain. We call this framework Parameter Optimal Transport (POT). By using the transferred parameters as informative priors, they can also be used to further improve the model accuracy. We call this refinement process Refined Parameter Optimal Transport (RePOT). Full paper with appendix

Backgroud

  • Bayesian Hilbert Mapping (BHM) is a technique that uses variational inference to estimate uncertainity in occupancy mapping. It uses kernels to project LIDAR data into a high dimensional linear feature space to capture nonlinear spatial patterns and perferm Bayesian inference to model uncertainty.
  • Automorphing Bayesian Hilbert Maps (ABHM) learns all geometry-dependent parameters and hyperparameters of BHM in an offline fashion.
  • This paper proposes a technique for online estimation of all the parameters and hyperparameters merely by comparing the similarity among environments.

Talk Video: https://youtu.be/-qRWH9mXFy8 Demo Video: https://youtu.be/qLv0mM9Le8E

Carla Simulation of POT

Optimal Transport

Domain adaptation using Parameter Optimal Transport (POT)

Instructions to run the code: TODO

test.py

BibTeX:

@inproceedings{tompkins2020domain,
  title={Online Domain Adaptation for Occupancy Mapping},
  author={Tompkins, Anthony and Senanayake, Ransalu and Ramos, Fabio},
  booktitle={Proceedings of the Robotics: Science and Systems (RSS)},
  year={2020}
}
Owner
Anthony
Anthony
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Code for Subgraph Federated Learning with Missing Neighbor Generation (NeurIPS 2021)

To run the code Unzip the package to your local directory; Run 'pip install -r requirements.txt' to download required packages; Open file ~/nips_code/

32 Dec 26, 2022
Pytorch implementation for Patient Knowledge Distillation for BERT Model Compression

Patient Knowledge Distillation for BERT Model Compression Knowledge distillation for BERT model Installation Run command below to install the environm

Siqi 180 Dec 19, 2022
Non-Attentive-Tacotron - This is Pytorch Implementation of Google's Non-attentive Tacotron.

Non-attentive Tacotron - PyTorch Implementation This is Pytorch Implementation of Google's Non-attentive Tacotron, text-to-speech system. There is som

Jounghee Kim 46 Dec 19, 2022
Classify bird species based on their songs using SIamese Networks and 1D dilated convolutions.

The goal is to classify different birds species based on their songs/calls. Spectrograms have been extracted from the audio samples and used as features for classification.

Aditya Dutt 9 Dec 27, 2022
Official codebase for "B-Pref: Benchmarking Preference-BasedReinforcement Learning" contains scripts to reproduce experiments.

B-Pref Official codebase for B-Pref: Benchmarking Preference-BasedReinforcement Learning contains scripts to reproduce experiments. Install conda env

48 Dec 20, 2022
ZeroGen: Efficient Zero-shot Learning via Dataset Generation

ZEROGEN This repository contains the code for our paper “ZeroGen: Efficient Zero

Jiacheng Ye 31 Dec 30, 2022
This is the repository for our paper Ditch the Gold Standard: Re-evaluating Conversational Question Answering

Ditch the Gold Standard: Re-evaluating Conversational Question Answering This is the repository for our paper Ditch the Gold Standard: Re-evaluating C

Princeton Natural Language Processing 38 Dec 16, 2022
Neighborhood Contrastive Learning for Novel Class Discovery

Neighborhood Contrastive Learning for Novel Class Discovery This repository contains the official implementation of our paper: Neighborhood Contrastiv

Zhun Zhong 56 Dec 09, 2022
Eff video representation - Efficient video representation through neural fields

Neural Residual Flow Fields for Efficient Video Representations 1. Download MPI

41 Jan 06, 2023
A small library for doing fluid simulation with neural networks.

Neural Fluid Fields This is a small library for doing fluid simulation with neural fields. Check out our review paper, Neural Fields in Visual Computi

Towaki 23 Jun 23, 2022
An unsupervised learning framework for depth and ego-motion estimation from monocular videos

SfMLearner This codebase implements the system described in the paper: Unsupervised Learning of Depth and Ego-Motion from Video Tinghui Zhou, Matthew

Tinghui Zhou 1.8k Dec 30, 2022
Meta Learning Backpropagation And Improving It (VSML)

Meta Learning Backpropagation And Improving It (VSML) This is research code for the NeurIPS 2021 publication Kirsch & Schmidhuber 2021. Many concepts

Louis Kirsch 22 Dec 21, 2022
Voice assistant - Voice assistant with python

🌐 Python Voice Assistant 🌵 - User's greeting 🌵 - Writing tasks to todo-list ?

PythonToday 10 Dec 26, 2022
Using CNN to mimic the driver based on training data from Torcs

Behavioural-Cloning-in-autonomous-driving Using CNN to mimic the driver based on training data from Torcs. Approach First, the data was collected from

Sudharshan 2 Jan 05, 2022
Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective

Unofficial pytorch implementation of the paper "Unsupervised Real-World Super-Resolution: A Domain Adaptation Perspective"

16 Nov 21, 2022
Supplementary code for the paper "Meta-Solver for Neural Ordinary Differential Equations" https://arxiv.org/abs/2103.08561

Meta-Solver for Neural Ordinary Differential Equations Towards robust neural ODEs using parametrized solvers. Main idea Each Runge-Kutta (RK) solver w

Julia Gusak 25 Aug 12, 2021
Joint parameterization and fitting of stroke clusters

StrokeStrip: Joint Parameterization and Fitting of Stroke Clusters Dave Pagurek van Mossel1, Chenxi Liu1, Nicholas Vining1,2, Mikhail Bessmeltsev3, Al

Dave Pagurek 44 Dec 01, 2022
City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces

City Surfaces: City-scale Semantic Segmentation of Sidewalk Surfaces Paper Temporary GitHub page for City Surfaces paper. More soon! While designing s

14 Nov 10, 2022