Neighborhood Contrastive Learning for Novel Class Discovery

Related tags

Deep LearningNCL
Overview

Neighborhood Contrastive Learning for Novel Class Discovery

License PyTorch

This repository contains the official implementation of our paper:

Neighborhood Contrastive Learning for Novel Class Discovery, CVPR 2021
Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, Nicu Sebe

Requirements

PyTorch >= 1.1

Data preparation

We follow AutoNovel to prepare the data

By default, we save the dataset in ./data/datasets/ and trained models in ./data/experiments/.

  • For CIFAR-10 and CIFAR-100, the datasets can be automatically downloaded by PyTorch.

  • For ImageNet, we use the exact split files used in the experiments following existing work. To download the split files, run the command: sh scripts/download_imagenet_splits.sh . The ImageNet dataset folder is organized in the following way:

    ImageNet/imagenet_rand118 #downloaded by the above command
    ImageNet/images/train #standard ImageNet training split
    ImageNet/images/val #standard ImageNet validation split
    

Pretrained models

We use the pretrained models (self-supervised learning and supervised learning) provided by AutoNovel. To download, run:

sh scripts/download_pretrained_models.sh

If you would like to train the self-supervised learning and supervised learning models by yourself, please refer to AutoNovel for more details.

After downloading, you can go to perform our neighbor contrastive learning below.

Neighborhood Contrastive Learning for Novel Class Discovery

CIFAR10/CIFAR100

Without Hard Negative Generation (w/o HNG)
# Train on CIFAR10
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_cifar10.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar10.pth

# Train on CIFAR100
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_cifar100.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar100.pth
With Hard Negative Generation (w/ HNG)
# Train on CIFAR10
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_hng_cifar10.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar10.pth

# Train on CIFAR100
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_hng_cifar100.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar100.pth

Note that, for cifar-10, we suggest to train the model w/o HNG, because the results of w HNG and w/o HNG for cifar-10 are similar. In addition, the model w/ HNG sometimes will collapse, but you can try different seeds to get the normal result.

ImageNet

Without Hard Negative Generation (w/o HNG)
# Subset A
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset A --model_name resnet_imagenet_ncl

# Subset B
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset B --model_name resnet_imagenet_ncl

# Subset C
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset C --model_name resnet_imagenet_ncl
With Hard Negative Generation (w/o HNG)
# Subset A
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset A --model_name resnet_imagenet_ncl_hng

# Subset B
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset B --model_name resnet_imagenet_ncl_hng

# Subset C
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset C --model_name resnet_imagenet_ncl_hng

Acknowledgement

Our code is heavily designed based on AutoNovel. If you use this code, please also acknowledge their paper.

Citation

We hope you find our work useful. If you would like to acknowledge it in your project, please use the following citation:

@InProceedings{Zhong_2021_CVPR,
      author    = {Zhong, Zhun and Fini, Enrico and Roy, Subhankar and Luo, Zhiming and Ricci, Elisa and Sebe, Nicu},
      title     = {Neighborhood Contrastive Learning for Novel Class Discovery},
      booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month     = {June},
      year      = {2021},
      pages     = {10867-10875}
}

Contact me

If you have any questions about this code, please do not hesitate to contact me.

Zhun Zhong

Owner
Zhun Zhong
Zhun Zhong
PyTorch implementation(s) of various ResNet models from Twitch streams.

pytorch-resnet-twitch PyTorch implementation(s) of various ResNet models from Twitch streams. Status: ResNet50 currently not working. Will update in n

Daniel Bourke 3 Jan 11, 2022
Continuous Conditional Random Field Convolution for Point Cloud Segmentation

CRFConv This repository is the implementation of "Continuous Conditional Random Field Convolution for Point Cloud Segmentation" 1. Setup 1) Building c

Fei Yang 8 Dec 08, 2022
Code for Understanding Pooling in Graph Neural Networks

Select, Reduce, Connect This repository contains the code used for the experiments of: "Understanding Pooling in Graph Neural Networks" Setup Install

Daniele Grattarola 37 Dec 13, 2022
This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (EMNLP 2020)

Towards Persona-Based Empathetic Conversational Models (PEC) This is the repo for our work "Towards Persona-Based Empathetic Conversational Models" (E

Zhong Peixiang 35 Nov 17, 2022
Mae segmentation - Reproduction of semantic segmentation using masked autoencoder (mae)

ADE20k Semantic segmentation with MAE Getting started Install the mmsegmentation

97 Dec 17, 2022
[WACV 2020] Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints

Reducing Footskate in Human Motion Reconstruction with Ground Contact Constraints Official implementation for Reducing Footskate in Human Motion Recon

Virginia Tech Vision and Learning Lab 38 Nov 01, 2022
RLDS stands for Reinforcement Learning Datasets

RLDS RLDS stands for Reinforcement Learning Datasets and it is an ecosystem of tools to store, retrieve and manipulate episodic data in the context of

Google Research 135 Jan 01, 2023
Pairwise learning neural link prediction for ogb link prediction

Pairwise Learning for Neural Link Prediction for OGB (PLNLP-OGB) This repository provides evaluation codes of PLNLP for OGB link property prediction t

Zhitao WANG 31 Oct 10, 2022
PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper.

deep-linear-shapes PyTorch implementation of "Representing Shape Collections with Alignment-Aware Linear Models" paper. If you find this code useful i

Romain Loiseau 27 Sep 24, 2022
EXplainable Artificial Intelligence (XAI)

EXplainable Artificial Intelligence (XAI) This repository includes the codes for different projects on eXplainable Artificial Intelligence (XAI) by th

4 Nov 28, 2022
Deep Reinforcement Learning based autonomous navigation for quadcopters using PPO algorithm.

PPO-based Autonomous Navigation for Quadcopters This repository contains an implementation of Proximal Policy Optimization (PPO) for autonomous naviga

Bilal Kabas 16 Nov 11, 2022
Pytorch version of VidLanKD: Improving Language Understanding viaVideo-Distilled Knowledge Transfer

VidLanKD Implementation of VidLanKD: Improving Language Understanding via Video-Distilled Knowledge Transfer by Zineng Tang, Jaemin Cho, Hao Tan, Mohi

Zineng Tang 54 Dec 20, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

The official code for the NeurIPS 2021 paper Generalized Jensen-Shannon Divergence Loss for Learning with Noisy Labels

13 Dec 22, 2022
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Credit fraud detection in Python using a Jupyter Notebook

Credit-Fraud-Detection - Credit fraud detection in Python using a Jupyter Notebook , using three classification models (Random Forest, Gaussian Naive Bayes, Logistic Regression) from the sklearn libr

Ali Akram 4 Dec 28, 2021
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
Hyperparameter tuning for humans

KerasTuner KerasTuner is an easy-to-use, scalable hyperparameter optimization framework that solves the pain points of hyperparameter search. Easily c

Keras 2.6k Dec 27, 2022
TVNet: Temporal Voting Network for Action Localization

TVNet: Temporal Voting Network for Action Localization This repo holds the codes of paper: "TVNet: Temporal Voting Network for Action Localization". P

hywang 5 Jul 26, 2022
Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

Federated learning on graph, especially on graph neural networks (GNNs), knowledge graph, and private GNN.

keven 198 Dec 20, 2022