Neighborhood Contrastive Learning for Novel Class Discovery

Related tags

Deep LearningNCL
Overview

Neighborhood Contrastive Learning for Novel Class Discovery

License PyTorch

This repository contains the official implementation of our paper:

Neighborhood Contrastive Learning for Novel Class Discovery, CVPR 2021
Zhun Zhong, Enrico Fini, Subhankar Roy, Zhiming Luo, Elisa Ricci, Nicu Sebe

Requirements

PyTorch >= 1.1

Data preparation

We follow AutoNovel to prepare the data

By default, we save the dataset in ./data/datasets/ and trained models in ./data/experiments/.

  • For CIFAR-10 and CIFAR-100, the datasets can be automatically downloaded by PyTorch.

  • For ImageNet, we use the exact split files used in the experiments following existing work. To download the split files, run the command: sh scripts/download_imagenet_splits.sh . The ImageNet dataset folder is organized in the following way:

    ImageNet/imagenet_rand118 #downloaded by the above command
    ImageNet/images/train #standard ImageNet training split
    ImageNet/images/val #standard ImageNet validation split
    

Pretrained models

We use the pretrained models (self-supervised learning and supervised learning) provided by AutoNovel. To download, run:

sh scripts/download_pretrained_models.sh

If you would like to train the self-supervised learning and supervised learning models by yourself, please refer to AutoNovel for more details.

After downloading, you can go to perform our neighbor contrastive learning below.

Neighborhood Contrastive Learning for Novel Class Discovery

CIFAR10/CIFAR100

Without Hard Negative Generation (w/o HNG)
# Train on CIFAR10
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_cifar10.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar10.pth

# Train on CIFAR100
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_cifar100.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar100.pth
With Hard Negative Generation (w/ HNG)
# Train on CIFAR10
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_hng_cifar10.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar10.pth

# Train on CIFAR100
CUDA_VISIBLE_DEVICES=0 sh scripts/ncl_hng_cifar100.sh ./data/datasets/CIFAR/ ./data/experiments/ ./data/experiments/pretrained/supervised_learning/resnet_rotnet_cifar100.pth

Note that, for cifar-10, we suggest to train the model w/o HNG, because the results of w HNG and w/o HNG for cifar-10 are similar. In addition, the model w/ HNG sometimes will collapse, but you can try different seeds to get the normal result.

ImageNet

Without Hard Negative Generation (w/o HNG)
# Subset A
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset A --model_name resnet_imagenet_ncl

# Subset B
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset B --model_name resnet_imagenet_ncl

# Subset C
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --unlabeled_subset C --model_name resnet_imagenet_ncl
With Hard Negative Generation (w/o HNG)
# Subset A
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset A --model_name resnet_imagenet_ncl_hng

# Subset B
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset B --model_name resnet_imagenet_ncl_hng

# Subset C
CUDA_VISIBLE_DEVICES=0 python ncl_imagenet.py --hard_negative_start 3 --unlabeled_subset C --model_name resnet_imagenet_ncl_hng

Acknowledgement

Our code is heavily designed based on AutoNovel. If you use this code, please also acknowledge their paper.

Citation

We hope you find our work useful. If you would like to acknowledge it in your project, please use the following citation:

@InProceedings{Zhong_2021_CVPR,
      author    = {Zhong, Zhun and Fini, Enrico and Roy, Subhankar and Luo, Zhiming and Ricci, Elisa and Sebe, Nicu},
      title     = {Neighborhood Contrastive Learning for Novel Class Discovery},
      booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
      month     = {June},
      year      = {2021},
      pages     = {10867-10875}
}

Contact me

If you have any questions about this code, please do not hesitate to contact me.

Zhun Zhong

Owner
Zhun Zhong
Zhun Zhong
RobustART: Benchmarking Robustness on Architecture Design and Training Techniques

The first comprehensive Robustness investigation benchmark on large-scale dataset ImageNet regarding ARchitecture design and Training techniques towards diverse noises.

132 Dec 23, 2022
The author's officially unofficial PyTorch BigGAN implementation.

BigGAN-PyTorch The author's officially unofficial PyTorch BigGAN implementation. This repo contains code for 4-8 GPU training of BigGANs from Large Sc

Andy Brock 2.6k Jan 02, 2023
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
Fuzzer for Linux Kernel Drivers

difuze: Fuzzer for Linux Kernel Drivers This repo contains all the sources (including setup scripts), you need to get difuze up and running. Tested on

seclab 344 Dec 27, 2022
Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)"

BAM and CBAM Official PyTorch code for "BAM: Bottleneck Attention Module (BMVC2018)" and "CBAM: Convolutional Block Attention Module (ECCV2018)" Updat

Jongchan Park 1.7k Jan 01, 2023
This is the official source code for SLATE. We provide the code for the model, the training code, and a dataset loader for the 3D Shapes dataset. This code is implemented in Pytorch.

SLATE This is the official source code for SLATE. We provide the code for the model, the training code and a dataset loader for the 3D Shapes dataset.

Gautam Singh 66 Dec 26, 2022
(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

(Preprint) Official PyTorch implementation of "How Do Vision Transformers Work?"

xxxnell 656 Dec 30, 2022
Picasso: a methods for embedding points in 2D in a way that respects distances while fitting a user-specified shape.

Picasso Code to generate Picasso embeddings of any input matrix. Picasso maps the points of an input matrix to user-defined, n-dimensional shape coord

Pachter Lab 45 Dec 23, 2022
Models Supported: AlbUNet [18, 34, 50, 101, 152] (1D and 2D versions for Single and Multiclass Segmentation, Feature Extraction with supports for Deep Supervision and Guided Attention)

AlbUNet-1D-2D-Tensorflow-Keras This repository contains 1D and 2D Signal Segmentation Model Builder for AlbUNet and several of its variants developed

Sakib Mahmud 1 Nov 15, 2021
Zero-shot Learning by Generating Task-specific Adapters

Code for "Zero-shot Learning by Generating Task-specific Adapters" This is the repository containing code for "Zero-shot Learning by Generating Task-s

INK Lab @ USC 11 Dec 17, 2021
PyTorch inference for "Progressive Growing of GANs" with CelebA snapshot

Progressive Growing of GANs inference in PyTorch with CelebA training snapshot Description This is an inference sample written in PyTorch of the origi

320 Nov 21, 2022
Hybrid Neural Fusion for Full-frame Video Stabilization

FuSta: Hybrid Neural Fusion for Full-frame Video Stabilization Project Page | Video | Paper | Google Colab Setup Setup environment for [Yu and Ramamoo

Yu-Lun Liu 430 Jan 04, 2023
This project is based on RIFE and aims to make RIFE more practical for users by adding various features and design new models

CPM 项目描述 CPM(Chinese Pretrained Models)模型是北京智源人工智能研究院和清华大学发布的中文大规模预训练模型。官方发布了三种规模的模型,参数量分别为109M、334M、2.6B,用户需申请与通过审核,方可下载。 由于原项目需要考虑大模型的训练和使用,需要安装较为复杂

hzwer 190 Jan 08, 2023
Dilated Convolution for Semantic Image Segmentation

Multi-Scale Context Aggregation by Dilated Convolutions Introduction Properties of dilated convolution are discussed in our ICLR 2016 conference paper

Fisher Yu 764 Dec 26, 2022
One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing".

Introduction One implementation of the paper "DMRST: A Joint Framework for Document-Level Multilingual RST Discourse Segmentation and Parsing". Users

seq-to-mind 18 Dec 11, 2022
[ICCV 2021] Official Pytorch implementation for Discriminative Region-based Multi-Label Zero-Shot Learning SOTA results on NUS-WIDE and OpenImages

Discriminative Region-based Multi-Label Zero-Shot Learning (ICCV 2021) [arXiv][Project page coming soon] Sanath Narayan*, Akshita Gupta*, Salman Kh

Akshita Gupta 54 Nov 21, 2022
Code for training and evaluation of the model from "Language Generation with Recurrent Generative Adversarial Networks without Pre-training"

Language Generation with Recurrent Generative Adversarial Networks without Pre-training Code for training and evaluation of the model from "Language G

Amir Bar 253 Sep 14, 2022
Progressive Image Deraining Networks: A Better and Simpler Baseline

Progressive Image Deraining Networks: A Better and Simpler Baseline [arxiv] [pdf] [supp] Introduction This paper provides a better and simpler baselin

190 Dec 01, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
利用yolov5和TensorRT从0到1实现目标检测的模型训练到模型部署全过程

写在前面 利用TensorRT加速推理速度是以时间换取精度的做法,意味着在推理速度上升的同时将会有精度的下降,不过不用太担心,精度下降微乎其微。此外,要有NVIDIA显卡,经测试,CUDA10.2可以支持20系列显卡及以下,30系列显卡需要CUDA11.x的支持,并且目前有bug。 默认你已经完成了

Helium 6 Jul 28, 2022