Official Repository for "Robust On-Policy Data Collection for Data Efficient Policy Evaluation" (NeurIPS 2021 Workshop on OfflineRL).

Overview

Robust On-Policy Data Collection for Data-Efficient Policy Evaluation

Source code of Robust On-Policy Data Collection for Data-Efficient Policy Evaluation (NeurIPS 2021 Workshop on OfflineRL).

The code is written in python 3, using Pytorch for the implementation of the deep networks and OpenAI gym for the experiment domains.

Requirements

To install the required codebase, it is recommended to create a conda or a virtual environment. Then, run the following command

pip install -r requirements.txt

Preparation

To conduct policy evaluation, we need to prepare a set of pretrained policies. You can skip this part if you already have the pretrained models in policy_models/ and the corresponding policy values in experiments/policy_info.py

Pretrained Policy

Train the policy models using REINFORCE in different domains by running:

python policy/reinfoce.py --exp_name {exp_name}

where {exp_name} can be MultiBandit, GridWorld, CartPole or CartPoleContinuous. The parameterized epsilon-greedy policies for MultiBandit and GridWorld can be obtained by running:

python policy/handmade_policy.py

Policy Value

Option 1: Run in sequence

For each policy model, the true policy value is estimated with $10^6$ Monte Carlo roll-outs by running:

python experiments/policy_value.py --policy_name {policy_name} --seed {seed} --n 10e6

This will print the average steps, true policy value and variance of returns. Make sure you copy these results into the file experiment/policy_info.py.

Option 2: Run in parallel

If you can use qsub or sbatch, you can also run jobs/jobs_value.py with different seeds in parallel and merge them by running experiments/merge_values.py to get $10^6$ Monte Carlo roll-outs. The policy values reported in this paper were obtained in this way.

Evaluation

Option 1: Run in sequence

The main running script for policy evaluation is experiments/evaluate.py. The following running command is an example of Monte Carlo estimation for Robust On-policy Acting with $\rho=1.0$ for the policy model_GridWorld_5000.pt with seeds from 0 to 199.

python experiments/evaluate.py --policy_name GridWorld_5000 --ros_epsilon 1.0 --collectors RobustOnPolicyActing --estimators MonteCarlo --eval_steps "7,14,29,59,118,237,475,951,1902,3805,7610,15221,30443,60886" --seeds "0,199"

To conduct policy evaluation with off-policy data, you need to add the following arguments to the above running command:

--combined_trajectories 100 --combined_ops_epsilon 0.10 

Option 2: Run in parallel

If you can use qsub or sbatch, you may only need to run the script jobs/jobs.py where all experiments in the paper are arranged. The log will be saved in log/ and the seed results will be saved in results/seeds. Note that we save the data collection cache in results/data and re-use it for different value estimations. To merge results of different seeds, run experiments/merge_results.py, and the merged results will be saved in results/.

Ploting

When the experiments are finished, all the figures in the paper are produced by running

python drawing/draw.py

Citing

If you use this repository in your work, please consider citing the paper

@inproceedings{zhong2021robust,
    title = {Robust On-Policy Data Collection for Data-Efficient Policy Evaluation},
    author = {Rujie Zhong, Josiah P. Hanna, Lukas Schäfer and Stefano V. Albrecht},
    booktitle = {NeurIPS Workshop on Offline Reinforcement Learning (OfflineRL)},
    year = {2021}
}
Owner
Autonomous Agents Research Group (University of Edinburgh)
Official code repositories for projects by the Autonomous Agents Research Group
Autonomous Agents Research Group (University of Edinburgh)
CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

CenterNet:Objects as Points目标检测模型在Pytorch当中的实现

Bubbliiiing 267 Dec 29, 2022
KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control

KeypointDeformer: Unsupervised 3D Keypoint Discovery for Shape Control Tomas Jakab, Richard Tucker, Ameesh Makadia, Jiajun Wu, Noah Snavely, Angjoo Ka

Tomas Jakab 87 Nov 30, 2022
Anomaly detection in multi-agent trajectories: Code for training, evaluation and the OpenAI highway simulation.

Anomaly Detection in Multi-Agent Trajectories for Automated Driving This is the official project page including the paper, code, simulation, baseline

12 Dec 02, 2022
A PyTorch based deep learning library for drug pair scoring.

Documentation | External Resources | Datasets | Examples ChemicalX is a deep learning library for drug-drug interaction, polypharmacy side effect and

AstraZeneca 597 Dec 30, 2022
Implementation of association rules mining algorithms (Apriori|FPGrowth) using python.

Association Rules Mining Using Python Implementation of association rules mining algorithms (Apriori|FPGrowth) using python. As a part of hw1 code in

Pre 2 Nov 10, 2021
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
Official PyTorch implementation of "Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient".

Edge Rewiring Goes Neural: Boosting Network Resilience via Policy Gradient This repository is the official PyTorch implementation of "Edge Rewiring Go

Shanchao Yang 4 Dec 12, 2022
Parametric Contrastive Learning (ICCV2021)

Parametric-Contrastive-Learning This repository contains the implementation code for ICCV2021 paper: Parametric Contrastive Learning (https://arxiv.or

DV Lab 156 Dec 21, 2022
This project intends to use SVM supervised learning to determine whether or not an individual is diabetic given certain attributes.

Diabetes Prediction Using SVM I explore a diabetes prediction algorithm using a Diabetes dataset. Using a Support Vector Machine for my prediction alg

Jeff Shen 1 Jan 14, 2022
PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021)

mlp-mixer-pytorch PyTorch implementation of "MLP-Mixer: An all-MLP Architecture for Vision" Tolstikhin et al. (2021) Usage import torch from mlp_mixer

isaac 27 Jul 09, 2022
Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel order of RGB and BGR. Simple Channel Converter for ONNX.

scc4onnx Very simple NCHW and NHWC conversion tool for ONNX. Change to the specified input order for each and every input OP. Also, change the channel

Katsuya Hyodo 16 Dec 22, 2022
A light weight data augmentation tool for training CNNs and Viola Jones detectors

hey-daug A light weight data augmentation tool for training CNNs and Viola Jones detectors (Haar Cascades). This tool inflates your data by up to six

Jaiyam Sharma 2 Nov 23, 2019
A proof of concept ai-powered Recaptcha v2 solver

Recaptcha Fullauto I've decided to open source my old Recaptcha v2 solver. My latest version will be opened sourced this summer. I am hoping this proj

Nate 60 Dec 20, 2022
Efficient 6-DoF Grasp Generation in Cluttered Scenes

Contact-GraspNet Contact-GraspNet: Efficient 6-DoF Grasp Generation in Cluttered Scenes Martin Sundermeyer, Arsalan Mousavian, Rudolph Triebel, Dieter

NVIDIA Research Projects 148 Dec 28, 2022
Cupytorch - A small framework mimics PyTorch using CuPy or NumPy

CuPyTorch CuPyTorch是一个小型PyTorch,名字来源于: 不同于已有的几个使用NumPy实现PyTorch的开源项目,本项目通过CuPy支持

Xingkai Yu 23 Aug 17, 2022
Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Google Cloud Storage

Keepsake Version control for machine learning. Keepsake is a Python library that uploads files and metadata (like hyperparameters) to Amazon S3 or Goo

Replicate 1.6k Dec 29, 2022
CvT-ASSD: Convolutional vision-Transformerbased Attentive Single Shot MultiBox Detector (ICTAI 2021 CCF-C 会议)The 33rd IEEE International Conference on Tools with Artificial Intelligence

CvT-ASSD including extra CvT, CvT-SSD, VGG-ASSD models original-code-website: https://github.com/albert-jin/CvT-SSD new-code-website: https://github.c

金伟强 -上海大学人工智能小渣渣~ 5 Mar 07, 2022
DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency

[CVPR19] DeepCO3: Deep Instance Co-segmentation by Co-peak Search and Co-saliency (Oral paper) Authors: Kuang-Jui Hsu, Yen-Yu Lin, Yung-Yu Chuang PDF:

Kuang-Jui Hsu 139 Dec 22, 2022
E2VID_ROS - E2VID_ROS: E2VID to a real-time system

E2VID_ROS Introduce We extend E2VID to a real-time system. Because Python ROS ca

Robin Shaun 7 Apr 17, 2022
MAg: a simple learning-based patient-level aggregation method for detecting microsatellite instability from whole-slide images

MAg Paper Abstract File structure Dataset prepare Data description How to use MAg? Why not try the MAg_lib! Trained models Experiment and results Some

Calvin Pang 3 Apr 08, 2022