Registration Loss Learning for Deep Probabilistic Point Set Registration

Related tags

Deep LearningRLLReg
Overview

RLLReg

This repository contains a Pytorch implementation of the point set registration method RLLReg. Details about the method can be found in the 3DV 2020 paper "Registration Loss Learning for Deep Probabilistic Point Set Registration".

ArXiv: [paper]

If you find the code useful, please cite using

@InProceedings{Lawin_2020_3DV,
    author = {Felix J\"aremo Lawin and Per-Erik Forss\'en},
    title = {Registration Loss Learning for Deep Probabilistic Point Set Registration},
    booktitle = {{IEEE/CVF} International Virtual Conference on 3D Vision ({3DV})},
    month = {November},
    year = {2020}} 

Installation

  • Clone the repository: git clone https://github.com/felja633/RLLReg.git
  • Create a conda environment and install the following dependencies:
conda create -n rllreg python=3.7
conda activate rllreg
conda install -y numpy pathlib mkl-include pyyaml
conda install -y pytorch==1.6.0 torchvision==0.7.0 cudatoolkit=10.2 -c pytorch
conda install -y -c conda-forge cudatoolkit-dev
pip install easydict visdom
pip install git+https://github.com/jonbarron/robust_loss_pytorch
conda install -y -c open3d-admin open3d
git clone https://github.com/NVIDIA/MinkowskiEngine.git
cd MinkowskiEngine
python setup.py install --cuda_home=/path/to/conda/rllreg 
pip install torch-scatter==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-sparse==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-cluster==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-spline-conv==latest+cu102 -f https://pytorch-geometric.com/whl/torch-1.6.0.html
pip install torch-geometric

Datasets

Kitti

Download and unpack Velodyne scans from http://www.cvlibs.net/download.php?file=data_odometry_velodyne.zip

3DMatch

Download RGB-D scenes from http://3dmatch.cs.princeton.edu/ using http://vision.princeton.edu/projects/2016/3DMatch/downloads/rgbd-datasets/download.sh and unpack the file. Download train.txt and test.txt. These contain the official train/test splits which can be found in the file https://vision.princeton.edu/projects/2016/3DMatch/downloads/rgbd-datasets/split.txt. Place these text files in the 3DMatch dataset folder.

Configuration

Set up your local environment by setting the correct paths for your system in config.py. Here you should set the paths to the datasets and pre-trained models.

Models

The following pre-trained models are available for download:

Name Training set Weights
RLLReg_threedmatch.pth 3DMatch download
RLLReg_threedmatch_multi.pth 3DMatch download
RLLReg_kitti.pth Kitti download
RLLReg_kitti_multi.pth Kitti download

For the version trained with contrastive loss, use the following models from https://github.com/chrischoy/FCGF

Name Training set Weights
2019-08-16_19-21-47.pth 3DMatch download
KITTI-v0.3-ResUNetBN2C-conv1-5-nout16.pth Kitti download

To further enable comparisons to DGR, download the weights for 3DMatch and Kitti.

Place all pre-trained weights in the same folder and set pretrained_networks to the path of that folder in config.py.

Running evaluations

Scripts for evaluation are available at experiments/. For an evaluation of pairwise registration as described in the paper run:

python experiments/evaluation_kitti.py

Training

Scripts for training are available at experiments/. If you want to train RLLReg for pairwise registration run:

python experiments/train_rll_kitti.py

Additional implementations

This repository also includes a pytorch version of Density Adaptive Point Set Registration (DARE) and Joint Registration of Multiple Point Clouds (JRMPC). Further, models/feature_reg_model_fcgf_fppsr.py and models/feature_reg_model_fpfh_fppsr.py contain pytorch implementations of FPPSR using FCGF and FPFH features respectively.

Under external/DeepGLobalRegistration the official implementation of DGR is located. The code is copied from the original repository but it is modified to use relative paths.

Contact

Felix Järemo Lawin

email: [email protected]

Acknowledgements

Special thanks go to Shivangi Srivastava who helped with initial implementations of the work!

Owner
Felix Järemo Lawin
Felix Järemo Lawin
Fast (simple) spectral synthesis and emission-line fitting of DESI spectra.

FastSpecFit Introduction This repository contains code and documentation to perform fast, simple spectral synthesis and emission-line fitting of DESI

5 Aug 02, 2022
Laplacian Score-regularized Concrete Autoencoders

Laplacian Score-regularized Concrete Autoencoders Requirements: torch = 1.9 scikit-learn = 0.24 omegaconf = 2.0.6 scipy = 1.6.0 matplotlib How to

JS 6 Dec 07, 2022
TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A good teacher is patient and consistent by Beyer et al.

FunMatch-Distillation TF2 implementation of knowledge distillation using the "function matching" hypothesis from the paper Knowledge distillation: A g

Sayak Paul 67 Dec 20, 2022
WHENet - ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L

HeadPoseEstimation-WHENet-yolov4-onnx-openvino ONNX, OpenVINO, TFLite, TensorRT, EdgeTPU, CoreML, TFJS, YOLOv4/YOLOv4-tiny-3L 1. Usage $ git clone htt

Katsuya Hyodo 49 Sep 21, 2022
Predicts an answer in yes or no.

Oui-ou-non-prediction Predicts an answer in 'yes' or 'no'. It is based on the game 'effeuiller la marguerite' in which the person plucks flower petals

Ananya Gupta 1 Jan 15, 2022
Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Example scripts for the detection of lanes using the ultra fast lane detection model in ONNX.

Ibai Gorordo 35 Sep 07, 2022
Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable.

Diffrax Numerical differential equation solvers in JAX. Autodifferentiable and GPU-capable. Diffrax is a JAX-based library providing numerical differe

Patrick Kidger 717 Jan 09, 2023
COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models

COVID-ViT COVID-VIT: Classification of Covid-19 from CT chest images based on vision transformer models This code is to response to te MIA-COV19 compe

17 Dec 30, 2022
DGN pymarl - Implementation of DGN on Pymarl, which could be trained by VDN or QMIX

This is the implementation of DGN on Pymarl, which could be trained by VDN or QM

4 Nov 23, 2022
A PaddlePaddle implementation of STGCN with a few modifications in the model architecture in order to forecast traffic jam.

About This repository contains the code of a PaddlePaddle implementation of STGCN based on the paper Spatio-Temporal Graph Convolutional Networks: A D

Tianjian Li 1 Jan 11, 2022
Lux AI environment interface for RLlib multi-agents

Lux AI interface to RLlib MultiAgentsEnv For Lux AI Season 1 Kaggle competition. LuxAI repo RLlib-multiagents docs Kaggle environments repo Please let

Jaime 12 Nov 07, 2022
NeurIPS 2021, self-supervised 6D pose on category level

SE(3)-eSCOPE video | paper | website Leveraging SE(3) Equivariance for Self-Supervised Category-Level Object Pose Estimation Xiaolong Li, Yijia Weng,

Xiaolong 63 Nov 22, 2022
ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

ICCV2021 Paper: AutoShape: Real-Time Shape-Aware Monocular 3D Object Detection

Zongdai 107 Dec 20, 2022
[Machine Learning Engineer Basic Guide] 부스트캠프 AI Tech - Product Serving 자료

Boostcamp-AI-Tech-Product-Serving 부스트캠프 AI Tech - Product Serving 자료 Repository 구조 part1(MLOps 개론, Model Serving, 머신러닝 프로젝트 라이프 사이클은 별도의 코드가 없으며, part

Sung Yun Byeon 269 Dec 21, 2022
Natural Posterior Network: Deep Bayesian Predictive Uncertainty for Exponential Family Distributions

Natural Posterior Network This repository provides the official implementation o

Oliver Borchert 54 Dec 06, 2022
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
Repositorio oficial del curso IIC2233 Programación Avanzada 🚀✨

IIC2233 - Programación Avanzada Evaluación Las evaluaciones serán efectuadas por medio de actividades prácticas en clases y tareas. Se calculará la no

IIC2233 @ UC 0 Dec 15, 2022
An abstraction layer for mathematical optimization solvers.

MathOptInterface Documentation Build Status Social An abstraction layer for mathematical optimization solvers. Replaces MathProgBase. Citing MathOptIn

JuMP-dev 284 Jan 04, 2023
Repo for flood prediction using LSTMs and HAND

Abstract Every year, floods cause billions of dollars’ worth of damages to life, crops, and property. With a proper early flood warning system in plac

1 Oct 27, 2021
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022