Code and datasets for the paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

Overview

KnowPrompt

Code and datasets for our paper "KnowPrompt: Knowledge-aware Prompt-tuning with Synergistic Optimization for Relation Extraction"

Requirements

To install requirements:

pip install -r requirements.txt

Datasets

We provide all the datasets and prompts used in our experiments.

The expected structure of files is:

knowprompt
 |-- dataset
 |    |-- semeval
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- dialogue
 |    |    |-- train.json       
 |    |    |-- dev.json
 |    |    |-- test.json
 |    |    |-- rel2id.json
 |    |-- tacred
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- tacrev
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |    |-- retacred
 |    |    |-- train.txt       
 |    |    |-- dev.txt
 |    |    |-- test.txt
 |    |    |-- temp.txt
 |    |    |-- rel2id.json
 |-- scripts
 |    |-- semeval.sh
 |    |-- dialogue.sh
 |    |-- ...
 

Run the experiments

Initialize the answer words

Use the comand below to get the answer words to use in the training.

python get_label_word.py --model_name_or_path bert-large-uncased  --dataset_name semeval

The {answer_words}.ptwill be saved in the dataset, you need to assign the model_name_or_path and dataset_name in the get_label_word.py.

Split dataset

Download the data first, and put it to dataset folder. Run the comand below, and get the few shot dataset.

python generate_k_shot.py --data_dir ./dataset --k 8 --dataset semeval
cd dataset
cd semeval
cp rel2id.json val.txt test.txt ./k-shot/8-1

You need to modify the k and dataset to assign k-shot and dataset. Here we default seed as 1,2,3,4,5 to split each k-shot, you can revise it in the generate_k_shot.py

Let's run

Our script code can automatically run the experiments in 8-shot, 16-shot, 32-shot and standard supervised settings with both the procedures of train, eval and test. We just choose the random seed to be 1 as an example in our code. Actually you can perform multiple experments with different seeds.

Example for SEMEVAL

Train the KonwPrompt model on SEMEVAL with the following command:

>> bash scripts/semeval.sh  # for roberta-large

As the scripts for TACRED-Revist, Re-TACRED, Wiki80 included in our paper are also provided, you just need to run it like above example.

Example for DialogRE

As the data format of DialogRE is very different from other dataset, Class of processor is also different. Train the KonwPrompt model on DialogRE with the following command:

>> bash scripts/dialogue.sh  # for roberta-base
Owner
ZJUNLP
NLP Group of Knowledge Engine Lab at Zhejiang University
ZJUNLP
Generic Event Boundary Detection: A Benchmark for Event Segmentation

Generic Event Boundary Detection: A Benchmark for Event Segmentation We release our data annotation & baseline codes for detecting generic event bound

47 Nov 22, 2022
This repo contains implementation of different architectures for emotion recognition in conversations.

Emotion Recognition in Conversations Updates πŸ”₯ πŸ”₯ πŸ”₯ Date Announcements 03/08/2021 πŸŽ† πŸŽ† We have released a new dataset M2H2: A Multimodal Multiparty

Deep Cognition and Language Research (DeCLaRe) Lab 1k Dec 30, 2022
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by FranΓ§ois Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Code for Piggyback: Adapting a Single Network to Multiple Tasks by Learning to Mask Weights

Piggyback: https://arxiv.org/abs/1801.06519 Pretrained masks and backbones are available here: https://uofi.box.com/s/c5kixsvtrghu9yj51yb1oe853ltdfz4q

Arun Mallya 165 Nov 22, 2022
vit for few-shot classification

Few-Shot ViT Requirements PyTorch (= 1.9) TorchVision timm (latest) einops tqdm numpy scikit-learn scipy argparse tensorboardx Pretrained Checkpoints

Martin Dong 26 Nov 30, 2022
A collection of resources and papers on Diffusion Models, a darkhorse in the field of Generative Models

This repository contains a collection of resources and papers on Diffusion Models and Score-based Models. If there are any missing valuable resources

5.1k Jan 08, 2023
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
Tensorflow implementation of Character-Aware Neural Language Models.

Character-Aware Neural Language Models Tensorflow implementation of Character-Aware Neural Language Models. The original code of author can be found h

Taehoon Kim 751 Dec 26, 2022
TSIT: A Simple and Versatile Framework for Image-to-Image Translation

TSIT: A Simple and Versatile Framework for Image-to-Image Translation This repository provides the official PyTorch implementation for the following p

Liming Jiang 255 Nov 23, 2022
A simple python module to generate anchor (aka default/prior) boxes for object detection tasks.

PyBx WIP A simple python module to generate anchor (aka default/prior) boxes for object detection tasks. Calculated anchor boxes are returned as ndarr

thatgeeman 4 Dec 15, 2022
Dist2Dec: A Simplicial Neural Network for Homology Localization

Dist2Dec: A Simplicial Neural Network for Homology Localization

Alexandros Keros 6 Jun 12, 2022
The official repository for "Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds"

Revealing unforeseen diagnostic image features with deep learning by detecting cardiovascular diseases from apical four-chamber ultrasounds The why Im

3 Mar 29, 2022
TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling

TiP-Adapter: Training-free CLIP-Adapter for Better Vision-Language Modeling This is the official code release for the paper 'TiP-Adapter: Training-fre

peng gao 189 Jan 04, 2023
The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting

About The Python code for the paper A Hybrid Quantum-Classical Algorithm for Robust Fitting The demo program was only tested under Conda in a standard

Anh-Dzung Doan 5 Nov 28, 2022
Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more"

The Official Pytorch and JAX implementation of "Efficient-VDVAE: Less is more" Arxiv preprint Louay Hazami   Β·   Rayhane Mama   Β·   Ragavan Thurairatn

Rayhane Mama 144 Dec 23, 2022
To build a regression model to predict the concrete compressive strength based on the different features in the training data.

Cement-Strength-Prediction Problem Statement To build a regression model to predict the concrete compressive strength based on the different features

Ashish Kumar 4 Jun 11, 2022
Sharpened cosine similarity torch - A Sharpened Cosine Similarity layer for PyTorch

Sharpened Cosine Similarity A layer implementation for PyTorch Install At your c

Brandon Rohrer 203 Nov 30, 2022
Inference code for "StylePeople: A Generative Model of Fullbody Human Avatars" paper. This code is for the part of the paper describing video-based avatars.

NeuralTextures This is repository with inference code for paper "StylePeople: A Generative Model of Fullbody Human Avatars" (CVPR21). This code is for

Visual Understanding Lab @ Samsung AI Center Moscow 18 Oct 06, 2022