A machine learning model for Covid case prediction

Overview

CovidcasePrediction

A machine learning model for Covid case prediction

Problem Statement Using regression algorithms we can able to track the active covid cases

Problem oppertunity We need to get data. We'll use a sample data set for that. The raw data is completely infused in the workspace. Preprocessing is done before the analyzing part. The data must be clean so that the model can analyze correctly. For that the rows with empty values are removed. A module is added fothat process. Individual measurable properties are called features. Each row is representing an automobile and each column represents the feature of that automobile. The model is build accordingly. Now that the data is ready, constructing a predictive model consists of training and testing. We'll use our data to train the model, and then we'll test the model to see how closely it's able to predict prices. Because we want to predict no of cases, which is a number, we'll use a regression algorithm.

Azure Machine learning studio

Here we are using 2 Algorithms

  1. Linear Regression
  2. Neural Network Regression

image

image

image

  1. The input values are to be found
  2. The csv file is converted to dataset
  3. The data miss is cleaned
  4. Split data
  5. The regression algorithms Linear Regression and Neural Network Regression takes place
  6. The data is trained
  7. Train model
  8. Score model
  9. Evaluate Model
  10. Output values obtained

In this case the both the training experiment and predicive experiments are done.

The API key: 8Lnx6+i4W7R2i7aFyGh+gmbhrnEpHrdFzd84kmvka7yEKTnt8P8EEKK46oXxmHHQphffTh9FvdPA2g3FEpCkgw==

https://studio.azureml.net/Home/ViewWorkspaceCached/5343e8d2284d47de9d5a3c941a85e8bf#Workspaces/Experiments/Experiment/5343e8d2284d47de9d5a3c941a85e8bf.f-id.06f7bb2e287e4d74aeaaf2223be0b151/ViewExperiment

The data prediction part is done as

  1. Cough
  2. Fever
  3. Sore Throat
  4. Shortness of Breath
  5. Headache
  6. Age 60 or Above
  7. Corona Result

By giving these values as sample we can predict.

https://studio.azureml.net/Home/ViewWorkspaceCached/5343e8d2284d47de9d5a3c941a85e8bf#Workspaces/Projects/Project/66450ebc-1dd6-44c3-a580-808dfc470798/ProjectDetails image

After that Deploy web service part is done the project is published to gallery. https://gallery.cortanaintelligence.com/Experiment/Covid-19-prediction-two-algos-Predictive-Exp

Owner
VijayAadhithya2019rit
VijayAadhithya2019rit
This repo implements a Topological SLAM: Deep Visual Odometry with Long Term Place Recognition (Loop Closure Detection)

This repo implements a topological SLAM system. Deep Visual Odometry (DF-VO) and Visual Place Recognition are combined to form the topological SLAM system.

Best of Australian Centre for Robotic Vision (ACRV) 32 Jun 23, 2022
Python package for stacking (machine learning technique)

vecstack Python package for stacking (stacked generalization) featuring lightweight functional API and fully compatible scikit-learn API Convenient wa

Igor Ivanov 671 Dec 25, 2022
A simple machine learning package to cluster keywords in higher-level groups.

Simple Keyword Clusterer A simple machine learning package to cluster keywords in higher-level groups. Example: "Senior Frontend Engineer" -- "Fronte

Andrea D'Agostino 10 Dec 18, 2022
Massively parallel self-organizing maps: accelerate training on multicore CPUs, GPUs, and clusters

Somoclu Somoclu is a massively parallel implementation of self-organizing maps. It exploits multicore CPUs, it is able to rely on MPI for distributing

Peter Wittek 239 Nov 10, 2022
Machine-Learning with python (jupyter)

Machine-Learning with python (jupyter) 머신러닝 야학 작심 10일과 쥬피터 노트북 기반 데이터 사이언스 시작 들어가기전 https://nbviewer.org/ 페이지를 통해서 쥬피터 노트북 내용을 볼 수 있다. 위 페이지에서 현재 레포 기

HyeonWoo Jeong 1 Jan 23, 2022
The Simpsons and Machine Learning: What makes an Episode Great?

The Simpsons and Machine Learning: What makes an Episode Great? Check out my Medium article on this! PROBLEM: The Simpsons has had a decline in qualit

1 Nov 02, 2021
Send rockets to Mars with artificial intelligence(Genetic algorithm) in python.

Send Rockets To Mars With AI Send rockets to Mars with artificial intelligence(Genetic algorithm) in python. Tools Python 3 EasyDraw How to Play Insta

Mohammad Dori 3 Jul 15, 2022
This project has Classification and Clustering done Via kNN and K-Means respectfully

This project has Classification and Clustering done Via kNN and K-Means respectfully. It later tests its efficiency via F1/accuracy/recall/precision for kNN and Davies-Bouldin Index for Clustering. T

Mohammad Ali Mustafa 0 Jan 20, 2022
A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

A repository for collating all the resources such as articles, blogs, papers, and books related to Bayesian Statistics.

Aayush Malik 80 Dec 12, 2022
LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading

LiuAlgoTrader is a scalable, multi-process ML-ready framework for effective algorithmic trading. The framework simplify development, testing, deployment, analysis and training algo trading strategies

Amichay Oren 458 Dec 24, 2022
Forecast dynamically at scale with this unique package. pip install scalecast

🌄 Scalecast: Dynamic Forecasting at Scale About This package uses a scaleable forecasting approach in Python with common scikit-learn and statsmodels

Michael Keith 158 Jan 03, 2023
List of Data Science Cheatsheets to rule the world

Data Science Cheatsheets List of Data Science Cheatsheets to rule the world. Table of Contents Business Science Business Science Problem Framework Dat

Favio André Vázquez 11.7k Dec 30, 2022
Anytime Learning At Macroscale

On Anytime Learning At Macroscale Learning from sequential data dumps (key) Requirements Python 3.7 Pytorch 1.9.0 Hydra 1.1.0 (pip install hydra-core

Meta Research 8 Mar 29, 2022
A Python implementation of GRAIL, a generic framework to learn compact time series representations.

GRAIL A Python implementation of GRAIL, a generic framework to learn compact time series representations. Requirements Python 3.6+ numpy scipy tslearn

3 Nov 24, 2021
PyHarmonize: Adding harmony lines to recorded melodies in Python

PyHarmonize: Adding harmony lines to recorded melodies in Python About To use this module, the user provides a wav file containing a melody, the key i

Julian Kappler 2 May 20, 2022
A concept I came up which ditches the idea of "layers" in a neural network.

Dynet A concept I came up which ditches the idea of "layers" in a neural network. Install Copy Dynet.py to your project. Run the example Install matpl

Anik Patel 4 Dec 05, 2021
GAM timeseries modeling with auto-changepoint detection. Inspired by Facebook Prophet and implemented in PyMC3

pm-prophet Pymc3-based universal time series prediction and decomposition library (inspired by Facebook Prophet). However, while Faceook prophet is a

Luca Giacomel 314 Dec 25, 2022
AutoOED: Automated Optimal Experiment Design Platform

AutoOED is an optimal experiment design platform powered with automated machine learning to accelerate the discovery of optimal solutions. Our platform solves multi-objective optimization problems an

Yunsheng Tian 107 Jan 03, 2023
🔬 A curated list of awesome machine learning strategies & tools in financial market.

🔬 A curated list of awesome machine learning strategies & tools in financial market.

GeorgeZou 1.6k Dec 30, 2022
Implemented four supervised learning Machine Learning algorithms

Implemented four supervised learning Machine Learning algorithms from an algorithmic family called Classification and Regression Trees (CARTs), details see README_Report.

Teng (Elijah) Xue 0 Jan 31, 2022