Dilated Convolution with Learnable Spacings PyTorch

Overview

Dilated-Convolution-with-Learnable-Spacings-PyTorch

Ismail Khalfaoui Hassani

Dilated Convolution with Learnable Spacings (abbreviated to DCLS) is a novel convolution method based on gradient descent and interpolation. It could be seen as an improvement of the well known dilated convolution that has been widely explored in deep convolutional neural networks and which aims to inflate the convolutional kernel by inserting spaces between the kernel elements.

In DCLS, the positions of the weights within the convolutional kernel are learned in a gradient-based manner, and the inherent problem of non-differentiability due to the integer nature of the positions in the kernel is solved by taking advantage of an interpolation method.

For now, the code has only been implemented on PyTorch, using Pytorch's C++ API and custom cuda extensions.

Installation

DCLS is based on PyTorch and CUDA. Please make sure that you have installed all the requirements before you install DCLS.

Install the last stable version from PyPI:

coming soon

Install the latest developing version from the source codes:

From GitHub:

git clone https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch.git
cd Dilated-Convolution-with-Learnable-Spacings-PyTorch
python ./setup.py install 

To prevent bad install directory or PYTHONPATH, please use

export PYTHONPATH=path/to/your/Python-Ver/lib/pythonVer/site-packages/
python ./setup.py install --prefix=path/to/your/Python-Ver/

Usage

Dcls methods could be easily used as a substitue of Pytorch's nn.Convnd classical convolution method:

from DCLS.modules.Dcls import Dcls2d

# With square kernels, equal stride and dilation
m = Dcls2d(16, 33, 3, dilation=4, stride=2)
# non-square kernels and unequal stride and with padding`and dilation
m = Dcls2d(16, 33, (3, 5), dilation=4, stride=(2, 1), padding=(4, 2))
# non-square kernels and unequal stride and with padding and dilation
m = Dcls2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 2))
# non-square kernels and unequal stride and with padding and dilation
m = Dcls2d(16, 33, (3, 5), stride=(2, 1), padding=(4, 2), dilation=(3, 2))
# With square kernels, equal stride, dilation and a scaling gain for the positions
m = Dcls2d(16, 33, 3, dilation=4, stride=2, gain=10)
input = torch.randn(20, 16, 50, 100)
output = m(input)

Note: using Dcls2d with a dilation argument of 1 basically amounts to using nn.Conv2d, therfore DCLS should always be used with a dilation > 1.

Construct and Im2col methods

The constructive DCLS method presents a performance problem when moving to larger dilations (greater than 7). Indeed, the constructed kernel is largely sparse (it has a sparsity of 1 - 1/(d1 * d2)) and the zeros are effectively taken into account during the convolution leading to great losses of performance in time and memory and this all the more as the dilation is large.

This is why we implemented an alternative method by adapting the im2col algorithm which aims to speed up the convolution by unrolling the input into a Toepliz matrix and then performing matrix multiplication.

You can use both methods by importing the suitable modules as follows:

from DCLS.construct.modules.Dcls import  Dcls2d as cDcls2d

# Will construct three (33, 16, (3x4), (3x4)) Tensors for weight, P_h positions and P_w positions 
m = cDcls2d(16, 33, 3, dilation=4, stride=2, gain=10)
input = torch.randn(20, 16, 50, 100)
output = m(input)
from DCLS.modules.Dcls import  Dcls2d 

# Will not construct kernels and will perform im2col algorithm instead 
m = Dcls2d(16, 33, 3, dilation=4, stride=2, gain=10)
input = torch.randn(20, 16, 50, 100)
output = m(input)

Note: in the im2col Dcls method the two extra learnable parameters P_h and P_w are of size channels_in // group x kernel_h x kernel_w, while in the construct method they are of size channels_out x channels_in // group x kernel_h x kernel_w

Device Supports

DCLS only supports Nvidia CUDA GPU devices for the moment. The CPU version has not been implemented yet.

  • Nvidia GPU
  • CPU

Make sure to have your data and model on CUDA GPU. DCLS-im2col doesn't support mixed precision operations for now. By default every tensor is converted to have float32 precision.

Publications and Citation

If you use DCLS in your work, please consider to cite it as follows:

@misc{Dilated Convolution with Learnable Spacings,
	title = {Dilated Convolution with Learnable Spacings},
	author = {Ismail Khalfaoui Hassani},
	year = {2021},
	howpublished = {\url{https://github.com/K-H-Ismail/Dilated-Convolution-with-Learnable-Spacings-PyTorch}},
	note = {Accessed: YYYY-MM-DD},
}

Contribution

This project is open source, therefore all your contributions are welcomed, whether it's reporting issues, finding and fixing bugs, requesting new features, and sending pull requests ...

Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Dec 30, 2022
GPU-Accelerated Deep Learning Library in Python

Hebel GPU-Accelerated Deep Learning Library in Python Hebel is a library for deep learning with neural networks in Python using GPU acceleration with

Hannes Bretschneider 1.2k Dec 21, 2022
Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight)

Semi-Supervised Semantic Segmentation via Adaptive Equalization Learning, NeurIPS 2021 (Spotlight) Abstract Due to the limited and even imbalanced dat

Hanzhe Hu 99 Dec 12, 2022
A new version of the CIDACS-RL linkage tool suitable to a cluster computing environment.

Fully Distributed CIDACS-RL The CIDACS-RL is a brazillian record linkage tool suitable to integrate large amount of data with high accuracy. However,

Robespierre Pita 5 Nov 04, 2022
Code release for NeuS

NeuS We present a novel neural surface reconstruction method, called NeuS, for reconstructing objects and scenes with high fidelity from 2D image inpu

Peng Wang 813 Jan 04, 2023
Code for the paper Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration

IMAGINE: Language as a Cognitive Tool to Imagine Goals in Curiosity Driven Exploration This repo contains the code base of the paper Language as a Cog

Flowers Team 26 Dec 22, 2022
This repo contains source code and materials for the TEmporally COherent GAN SIGGRAPH project.

TecoGAN This repository contains source code and materials for the TecoGAN project, i.e. code for a TEmporally COherent GAN for video super-resolution

Nils Thuerey 5.2k Jan 02, 2023
A high-level Python library for Quantum Natural Language Processing

lambeq About lambeq is a toolkit for quantum natural language processing (QNLP). Documentation: https://cqcl.github.io/lambeq/ Getting started Prerequ

Cambridge Quantum 315 Jan 01, 2023
Scripts of Machine Learning Algorithms from Scratch. Implementations of machine learning models and algorithms using nothing but NumPy with a focus on accessibility. Aims to cover everything from basic to advance.

Algo-ScriptML Python implementations of some of the fundamental Machine Learning models and algorithms from scratch. The goal of this project is not t

Algo Phantoms 81 Nov 26, 2022
The Deep Learning with Julia book, using Flux.jl.

Deep Learning with Julia DL with Julia is a book about how to do various deep learning tasks using the Julia programming language and specifically the

Logan Kilpatrick 67 Dec 25, 2022
Official PyTorch repo for JoJoGAN: One Shot Face Stylization

JoJoGAN: One Shot Face Stylization This is the PyTorch implementation of JoJoGAN: One Shot Face Stylization. Abstract: While there have been recent ad

1.3k Dec 29, 2022
T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time

T-LOAM: Truncated Least Squares Lidar-only Odometry and Mapping in Real-Time The first Lidar-only odometry framework with high performance based on tr

Pengwei Zhou 183 Dec 01, 2022
[ICRA 2022] An opensource framework for cooperative detection. Official implementation for OPV2V.

OpenCOOD OpenCOOD is an Open COOperative Detection framework for autonomous driving. It is also the official implementation of the ICRA 2022 paper OPV

Runsheng Xu 322 Dec 23, 2022
Tutorial: Introduction to Graph Machine Learning, with Jupyter notebooks

GraphMLTutorialNLDL22 Tutorial NLDL22: Introduction to Graph Machine Learning, with Jupyter notebooks This tutorial takes place during the conference

UiT Machine Learning Group 3 Jan 10, 2022
A PyTorch Implementation of "Watch Your Step: Learning Node Embeddings via Graph Attention" (NeurIPS 2018).

Attention Walk ⠀⠀ A PyTorch Implementation of Watch Your Step: Learning Node Embeddings via Graph Attention (NIPS 2018). Abstract Graph embedding meth

Benedek Rozemberczki 303 Dec 09, 2022
A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

A computational optimization project towards the goal of gerrymandering the results of a hypothetical election in the UK.

Emma 1 Jan 18, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks

P-tuning v2 P-Tuning v2: Prompt Tuning Can Be Comparable to Finetuning Universally Across Scales and Tasks An optimized prompt tuning strategy achievi

THUDM 540 Dec 30, 2022
This is the official implementation code repository of Underwater Light Field Retention : Neural Rendering for Underwater Imaging (Accepted by CVPR Workshop2022 NTIRE)

Underwater Light Field Retention : Neural Rendering for Underwater Imaging (UWNR) (Accepted by CVPR Workshop2022 NTIRE) Authors: Tian Ye†, Sixiang Che

jmucsx 17 Dec 14, 2022