Official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering"

Overview

Light Field Networks

Project Page | Paper | Data | Pretrained Models

Vincent Sitzmann*, Semon Rezchikov*, William Freeman, Joshua Tenenbaum, Frédo Durand
MIT, *denotes equal contribution

This is the official implementation of the paper "Light Field Networks: Neural Scene Representations with Single-Evaluation Rendering".

lfns_video

Get started

You can set up a conda environment with all dependencies like so:

conda env create -f environment.yml
conda activate siren

High-Level structure

The code is organized as follows:

  • multiclass_dataio.py and dataio.py contain the dataio for mutliclass- and single-class experiments respectively.
  • models.py contains the code for light field networks.
  • training.py contains a generic training routine.
  • ./experiment_scripts/ contains scripts to reproduce experiments in the paper.

Reproducing experiments

The directory experiment_scripts contains one script per experiment in the paper.

train_single_class.py trains a model on classes in the Scene Representation Networks format, such as cars or chairs. Note that since these datasets have a resolution of 128, this model starts with a lower resolution (64) and then increases the resolution to 128 (see line 43 in the script).

train_nmr.py trains a model on the NMR dataset. An example call is:

python experiment_scripts/train_nmr.py --data_root=path_to_nmr_dataset
python experiment_scripts/train_single_class.py --data_root=path_to_single_class

To reconstruct test objects, use the scripts "rec_single_class.py" and "rec_nmr.py". In addition to the data root, you have to point these scripts to the checkpoint from the training run. Note that the rec_nmr.py script uses the viewlist under ./experiment_scripts/viewlists/src_dvr.txt to pick which views to reconstruct the objects from, while rec_single_class.py per default reconstructs from the view with index 64.

python experiment_scripts/rec_nmr.py --data_root=path_to_nmr_dataset --checkpoint=path_to_training_checkpoint
python experiment_scripts/rec_single_class.py --data_root=path_to_single_class_TEST_SET --checkpoint=path_to_training_checkpoint

Finally, you may test the models on the test set with the test.py script. This script is used for testing all the models. You have to pass it as a parameter which dataset you are reconstructing ("NMR" or no). For the NMR dataset, you need to pass the "viewlist" again to make sure that the model is not evaluated on the context view.

python experiment_scripts/test.py --data_root=path_to_nmr_dataset --dataset=NMR --checkpoint=path_to_rec_checkpoint
python experiment_scripts/test.py --data_root=path_to_single_class_TEST_SET --dataset=single --checkpoint=path_to_rec_checkpoint

To monitor progress, both the training and reconstruction scripts write tensorboard summaries into a "summaries" subdirectory in the logging_root.

Bells & whistles

This code has a bunch of options that were not discussed in the paper.

  • switch between a ReLU network and a SIREN to better fit high-frequency content with the flag --network (see the init of model.py for options).
  • switch between a hypernetwork, conditioning via concatenation, and low-rank concditioning with the flag --conditioning
  • there is an implementation of encoder-based inference in models.py (LFEncoder) which uses a ResNet18 with global conditioning to generate the latent codes z.

Data

We use two types of datasets: class-specific ones and multi-class ones.

Coordinate and camera parameter conventions

This code uses an "OpenCV" style camera coordinate system, where the Y-axis points downwards (the up-vector points in the negative Y-direction), the X-axis points right, and the Z-axis points into the image plane. Camera poses are assumed to be in a "camera2world" format, i.e., they denote the matrix transform that transforms camera coordinates to world coordinates.

Misc

Citation

If you find our work useful in your research, please cite:

@inproceedings{sitzmann2021lfns,
               author = {Sitzmann, Vincent
                         and Rezchikov, Semon
                         and Freeman, William T.
                         and Tenenbaum, Joshua B.
                         and Durand, Fredo},
               title = {Light Field Networks: Neural Scene Representations
                        with Single-Evaluation Rendering},
               booktitle = {Proc. NeurIPS},
               year={2021}
            }

Contact

If you have any questions, please email Vincent Sitzmann at [email protected].

Owner
Vincent Sitzmann
Incoming Assistant Professor @mit EECS. I'm researching neural scene representations - the way neural networks learn to represent information on our world.
Vincent Sitzmann
StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators

StyleGAN-NADA: CLIP-Guided Domain Adaptation of Image Generators [Project Website] [Replicate.ai Project] StyleGAN-NADA: CLIP-Guided Domain Adaptation

992 Dec 30, 2022
Self-training for Few-shot Transfer Across Extreme Task Differences

Self-training for Few-shot Transfer Across Extreme Task Differences (STARTUP) Introduction This repo contains the official implementation of the follo

Cheng Perng Phoo 33 Oct 31, 2022
Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset

SW-CV-ModelZoo Repo for my Tensorflow/Keras CV experiments. Mostly revolving around the Danbooru20xx dataset Framework: TF/Keras 2.7 Training SQLite D

20 Dec 27, 2022
Interactive Image Generation via Generative Adversarial Networks

iGAN: Interactive Image Generation via Generative Adversarial Networks Project | Youtube | Paper Recent projects: [pix2pix]: Torch implementation for

Jun-Yan Zhu 3.9k Dec 23, 2022
Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations

Consumer Fairness in Recommender Systems: Contextualizing Definitions and Mitigations This is the repository for the paper Consumer Fairness in Recomm

7 Nov 30, 2022
A comprehensive and up-to-date developer education platform for Urbit.

curriculum A comprehensive and up-to-date developer education platform for Urbit. This project organizes developer capabilities into a hierarchy of co

Sigilante 36 Oct 04, 2022
Convert human motion from video to .bvh

video_to_bvh Convert human motion from video to .bvh with Google Colab Usage 1. Open video_to_bvh.ipynb in Google Colab Go to https://colab.research.g

Dene 306 Dec 10, 2022
Dashboard for the COVID19 spread

COVID-19 Data Explorer App A streamlit Dashboard for the COVID-19 spread. The app is live at: [https://covid19.cwerner.ai]. New data is queried from G

Christian Werner 22 Sep 29, 2022
A texturizer that I just made. Nothing special here.

texturizer This is a little project that I did with an hour's time. It texturizes an image given a image and a texture to texturize it with. There is

1 Nov 11, 2021
Detecting and Tracking Small and Dense Moving Objects in Satellite Videos: A Benchmark

This dataset is a large-scale dataset for moving object detection and tracking in satellite videos, which consists of 40 satellite videos captured by Jilin-1 satellite platforms.

Qingyong 87 Dec 22, 2022
PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and Multi-Step Knowledge Distillation

PocketNet This is the official repository of the paper: PocketNet: Extreme Lightweight Face Recognition Network using Neural Architecture Search and M

Fadi Boutros 40 Dec 22, 2022
The final project for "Applying AI to Wearable Device Data" course from "AI for Healthcare" - Udacity.

Motion Compensated Pulse Rate Estimation Overview This project has 2 main parts. Develop a Pulse Rate Algorithm on the given training data. Then Test

Omar Laham 2 Oct 25, 2022
A python library for implementing a recommender system

python-recsys A python library for implementing a recommender system. Installation Dependencies python-recsys is build on top of Divisi2, with csc-pys

Oscar Celma 1.5k Dec 17, 2022
A Pytorch Implementation of ClariNet

ClariNet A Pytorch Implementation of ClariNet (Mel Spectrogram -- Waveform) Requirements PyTorch 0.4.1 & python 3.6 & Librosa Examples Step 1. Downlo

Sungwon Kim 286 Sep 15, 2022
arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

arxiv-sanity, but very lite, simply providing the core value proposition of the ability to tag arxiv papers of interest and have the program recommend similar papers.

Andrej 671 Dec 31, 2022
Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and shape estimation at the university of Lincoln

PhD_3DPerception Repository aimed at compiling code, papers, demos etc.. related to my PhD on 3D vision and machine learning for fruit detection and s

lelouedec 2 Oct 06, 2022
EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising

EDCNN: Edge enhancement-based Densely Connected Network with Compound Loss for Low-Dose CT Denoising By Tengfei Liang, Yi Jin, Yidong Li, Tao Wang. Th

workingcoder 115 Jan 05, 2023
The Noise Contrastive Estimation for softmax output written in Pytorch

An NCE implementation in pytorch About NCE Noise Contrastive Estimation (NCE) is an approximation method that is used to work around the huge computat

Kaiyu Shi 287 Nov 25, 2022
Source code for "Roto-translated Local Coordinate Framesfor Interacting Dynamical Systems"

Roto-translated Local Coordinate Frames for Interacting Dynamical Systems Source code for Roto-translated Local Coordinate Frames for Interacting Dyna

Miltiadis Kofinas 19 Nov 27, 2022
Material related to the Principles of Cloud Computing course.

CloudComputingCourse Material related to the Principles of Cloud Computing course. This repository comprises material that I use to teach my Principle

Aniruddha Gokhale 15 Dec 02, 2022