[arXiv] What-If Motion Prediction for Autonomous Driving โ“๐Ÿš—๐Ÿ’จ

Overview

WIMP - What If Motion Predictor

Reference PyTorch Implementation for What If Motion Prediction [PDF] [Dynamic Visualizations]

Setup

Requirements

The WIMP reference implementation and setup procedure has been tested to work with Ubuntu 16.04+ and has the following requirements:

  1. python >= 3.7
  2. pytorch >= 1.5.0

Installing Dependencies

  1. Install remaining required Python dependencies using pip.

    pip install -r requirements.txt
  2. Install the Argoverse API module into the local Python environment by following steps 1, 2, and 4 in the README.

Argoverse Data

In order to set up the Argoverse dataset for training and evaluation, follow the steps below:

  1. Download the the Argoverse Motion Forecasting v1.1 dataset and extract the compressed data subsets such that the raw CSV files are stored in the following directory structure:

    โ”œโ”€โ”€ WIMP
    โ”‚   โ”œโ”€โ”€ src
    โ”‚   โ”œโ”€โ”€ scripts
    โ”‚   โ”œโ”€โ”€ data
    โ”‚   โ”‚   โ”œโ”€โ”€ argoverse_raw
    โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ train
    โ”‚   โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ *.csv
    โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ val
    โ”‚   โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ *.csv
    โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ test
    โ”‚   โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ *.csv
    
  2. Pre-process the raw Argoverse data into a WIMP-compatible format by running the following script. It should be noted that the Argoverse dataset is quite large and this script may take a few hours to run on a multi-threaded machine.

    python scripts/run_preprocess.py --dataroot ./data/argoverse_raw/ \
    --mode val --save-dir ./data/argoverse_processed --social-features \
    --map-features --xy-features --normalize --extra-map-features \
    --compute-all --generate-candidate-centerlines 6

Usage

For a detailed description of all possible configuration arguments, please run scripts with the -h flag.

Training

To train WIMP from scratch using a configuration similar to that reported in the paper, run a variant of the following command:

python src/main.py --mode train --dataroot ./data/argoverse_processed --IFC \
--lr 0.0001 --weight-decay 0.0 --non-linearity relu  --use-centerline-features \
--segment-CL-Encoder-Prob --num-mixtures 6 --output-conv --output-prediction \
--gradient-clipping --hidden-key-generator --k-value-threshold 10 \
--scheduler-step-size 60 90 120 150 180  --distributed-backend ddp \
--experiment-name example --gpus 4 --batch-size 25

Citing

If you've found this code to be useful, please consider citing our paper!

@article{khandelwal2020if,
  title={What-If Motion Prediction for Autonomous Driving},
  author={Khandelwal, Siddhesh and Qi, William and Singh, Jagjeet and Hartnett, Andrew and Ramanan, Deva},
  journal={arXiv preprint arXiv:2008.10587},
  year={2020}
}

Questions

This repo is maintained by William Qi and Siddhesh Khandelwal - please feel free to reach out or open an issue if you have additional questions/concerns.

We plan to clean up the codebase and add some additional utilities (possibly NuScenes data loaders and inference/visualization tools) in the near future, but don't expect to make significant breaking changes.

Comments
  • Pandas Error runpreprocess.py

    Pandas Error runpreprocess.py

    Hello! First of all, thank you for making your code available for the readers of your great paper. I am having an issue while running run_preprocess.py. I think while reading the csv something goes wrong since my error is a pandas error. When I try to run the script, it gives me: KeyError: 'CITY_NAME' When I go to the script and give "MIA" as the CITY_NAME, just to see what happens, I receive a similar error: KeyError: 'OBJECT_TYPE' I checked the paths for the data. It seems fine. What could be the reason? Thank you!

    opened by ahmetgurhan 0
  • Loss dimensions

    Loss dimensions

    Hi, thank you so much for your fantastic work.

    Which is the order, and the dimensions, in this function?

    def l1_ewta_loss(prediction, target, k=6, eps=1e-7, mr=2.0):
        num_mixtures = prediction.shape[1]
    
        target = target.unsqueeze(1).expand(-1, num_mixtures, -1, -1)
        l1_loss = nn.functional.l1_loss(prediction, target, reduction='none').sum(dim=[2, 3])
    
        # Get loss from top-k mixtures for each timestep
        mixture_loss_sorted, mixture_ranks = torch.sort(l1_loss, descending=False)
        mixture_loss_topk = mixture_loss_sorted.narrow(1, 0, k)
    
        # Aggregate loss across timesteps and batch
        loss = mixture_loss_topk.sum()
        loss = loss / target.size(0)
        loss = loss / target.size(2)
        loss = loss / k
        return loss
    

    I am not able to obtain good results compared to NLL. I have as inputs:

    predictions: batch_size x num_modes x pred_len x data_dim (e.g. 1024 x 6 x 30 x 2) gt: batch_size x pred_len x data_dim (e.g. 1024 x 30 x 2)

    Is this correct?

    opened by Cram3r95 0
  • Reproducing the Map-Free and only Social-Context Results form the Ablation Study

    Reproducing the Map-Free and only Social-Context Results form the Ablation Study

    Hey there,

    I want to reproduce the results of your ablation study, where you only used Social-Context with EWTA-Loss.

    image

    However, I habe problems training the model only with social context. What are the correct flags I need to set for preprocessing (run_preprocess.py) and for training (main.py)?

    Looking forward hearing from you soon!

    Best regards

    SchDevel

    opened by SchDevel 2
  • Can I get your inference/visualization code?

    Can I get your inference/visualization code?

    Hi, first of all, thanks for your awesome work and sharing that to us.

    I tried to make inference/visualization code by myself, unfortunately, there were some problems.

    Maybe library's mismatching, my insufficient coding skills, or something else.

    So, can i get your inference/visualization code or even skeleton base code?

    opened by raspbe34 3
  • What is the method for incomplete trajectories?

    What is the method for incomplete trajectories?

    Hi, thanks for sharing your great work~ I am wondering how you deal with the incomplete trajectories problem (agents have less then 2 seconds of history).

    1. I notice that for the neighboring agent wrt focal agent, you discard all the agents (code) if their trajectories are not complete
    2. how would you deal with those incomplete trajectories for the focal agent? Did you use interpolation or some techniques?

    Thanks!

    opened by XHwind 0
Releases(1.0)
Owner
William Qi
Prediction @argoai
William Qi
PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

PyTorch implementations of Top-N recommendation, collaborative filtering recommenders.

Yoonki Jeong 129 Dec 22, 2022
Unified learning approach for egocentric hand gesture recognition and fingertip detection

Unified Gesture Recognition and Fingertip Detection A unified convolutional neural network (CNN) algorithm for both hand gesture recognition and finge

Mohammad 227 Dec 25, 2022
B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search

B2EA: An Evolutionary Algorithm Assisted by Two Bayesian Optimization Modules for Neural Architecture Search This is the offical implementation of the

SNU ADSL 0 Feb 07, 2022
A library for efficient similarity search and clustering of dense vectors.

Faiss Faiss is a library for efficient similarity search and clustering of dense vectors. It contains algorithms that search in sets of vectors of any

Meta Research 18.8k Jan 08, 2023
Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch]

Ensemble Learning Priors Driven Deep Unfolding for Scalable Snapshot Compressive Imaging [PyTorch] Abstract Snapshot compressive imaging (SCI) can rec

integirty 6 Nov 01, 2022
This repository contains the implementation of the paper: Federated Distillation of Natural Language Understanding with Confident Sinkhorns

Federated Distillation of Natural Language Understanding with Confident Sinkhorns This repository provides an alternative method for ensembled distill

Deep Cognition and Language Research (DeCLaRe) Lab 11 Nov 16, 2022
UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring

UNAVOIDS: Unsupervised and Nonparametric Approach for Visualizing Outliers and Invariant Detection Scoring Code Summary aggregate.py: this script aggr

1 Dec 28, 2021
Character Controllers using Motion VAEs

Character Controllers using Motion VAEs This repo is the codebase for the SIGGRAPH 2020 paper with the title above. Please find the paper and demo at

Electronic Arts 165 Jan 03, 2023
This repo tries to recognize faces in the dataset you created

YรœZ TANIMA SฤฐSTEMฤฐ Bu repo oluลŸturacaฤŸฤฑnฤฑz yรผz verisetlerini tanฤฑmaya รงalฤฑลŸan ma

Mehdi KOลžACA 2 Dec 30, 2021
This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation.

ERFNet This code is a toolbox that uses Torch library for training and evaluating the ERFNet architecture for semantic segmentation. NEW!! New PyTorch

Edu 104 Jan 05, 2023
Face Mask Detection on Image and Video using tensorflow and keras

Face-Mask-Detection Face Mask Detection on Image and Video using tensorflow and keras Train Neural Network on face-mask dataset using tensorflow and k

Nahid Ebrahimian 12 Nov 11, 2022
Negative Sample is Negative in Its Own Way: Tailoring Negative Sentences forImage-Text Retrieval

NSGDC Some codes in this repo are copied/modified from opensource implementations made available by UNITER, PyTorch, HuggingFace, OpenNMT, and Nvidia.

Zhihao Fan 2 Nov 07, 2022
List some popular DeepFake models e.g. DeepFake, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, SimSwap, CihaNet, etc.

deepfake-models List some popular DeepFake models e.g. DeepFake, CihaNet, SimSwap, FaceSwap-MarekKowal, IPGAN, FaceShifter, FaceSwap-Nirkin, FSGAN, Si

Mingcan Xiang 100 Dec 17, 2022
Apollo optimizer in tensorflow

Apollo Optimizer in Tensorflow 2.x Notes: Warmup is important with Apollo optimizer, so be sure to pass in a learning rate schedule vs. a constant lea

Evan Walters 1 Nov 09, 2021
Source code for our paper "Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash"

Learning to Break Deep Perceptual Hashing: The Use Case NeuralHash Abstract: Apple recently revealed its deep perceptual hashing system NeuralHash to

<a href=[email protected]"> 11 Dec 03, 2022
Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection"

CrossTeaching-SSOD 0. Introduction Official code of "Mitigating the Mutual Error Amplification for Semi-Supervised Object Detection" This repo include

Bruno Ma 9 Nov 29, 2022
Fedlearnๆ”ฏๆŒๅ‰ๆฒฟ็ฎ—ๆณ•็ ”ๅ‘็š„Pythonๅทฅๅ…ทๅบ“ | Fedlearn algorithm toolkit for researchers

FedLearn-algo Installation Development Environment Checklist python3 (3.6 or 3.7) is required. To configure and check the development environment is c

89 Nov 14, 2022
Hand tracking demo for DIY Smart Glasses with a remote computer doing the work

CameraStream This is a demonstration that streams the image from smartglasses to a pc, does the hand recognition on the remote pc and streams the proc

Teemu Laurila 20 Oct 13, 2022
Evaluation toolkit of the informative tracking benchmark comprising 9 scenarios, 180 diverse videos, and new challenges.

Informative-tracking-benchmark Informative tracking benchmark (ITB) higher diversity. It contains 9 representative scenarios and 180 diverse videos. m

Xin Li 15 Nov 26, 2022
Revealing and Protecting Labels in Distributed Training

Revealing and Protecting Labels in Distributed Training

Google Interns 0 Nov 09, 2022