Codebase for the paper titled "Continual learning with local module selection"

Related tags

Deep LearningLMC
Overview

This repository contains the codebase for the paper Continual Learning via Local Module Composition.


Setting up the environemnt

Create a new conda environment and install the requirements.

conda create --name ENV python=3.7
conda activate ENV
pip install -r requirements.txt
pip install -e Utils/ctrl/
pip install Utils/nngeometry/

CTrL Benchmark

All experiments were run on Nvidia Quadro RTX 8000 GPUs. To run CTrL experiments use the following comands for different streams:

Stream S-

LMC (task agnostic)

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_minus --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.6863, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_minus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3

(test acc. 0.667, 12 modules)

Stream S+

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --pr_name lmc_cr --epochs=100 --epochs_str_only_after_addition=1 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_plus --temp=1 --wdecay=0.001

(test acc. 0.6244, 22 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_plus --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.609, 18 modules)

Stream Sin

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_in --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=most_likely --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.7081, 21 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_in --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-3 --regenerate_seed 0

(test acc. 0.6646, 15 modules)

Stream Sout

LMC

python main_transfer.py --activate_after_str_oh=0 --momentum_bn 0.1 --track_running_stats_bn 1 --pr_name lmc_cr --shuffle_test 0 --init_oh=none --task_sequence s_out --momentum_bn_decoder=0.1 --activation_structural=sigmoid --deviation_threshold=4 --depth=4 --epochs=100 --fix_layers_below_on_addition=0 --hidden_size=64 --lr=0.001 --mask_str_loss=1 --module_init=mean --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=20 --reg_factor=10  --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --temp=0.1 --wdecay=0.001

(test acc. 0.5849, 15 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_out --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 0 --regenerate_seed 0

(test acc. 0.6567, 11 modules)

Stream Spl

LMC

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --pr_name lmc_cr --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --hidden_size=64 --init_oh=none --init_runingstats_on_addition=0 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=10 --reg_factor=10 --running_stats_steps=100 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pl --temp=1 --regenerate_seed 0 --wdecay=0.001

(test acc. 0.6241, 19 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --pr_name lmc_cr --copy_batchstats 1 --track_running_stats_bn 1 --task_sequence s_pl --gating MNTDP --shuffle_test 0 --epochs 100 --lr 1e-3 --wdecay 1e-4 --regenerate_seed 0

(test acc. 0.6391, 18 modules)


Stream Slong30 -- 30 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --epochs=50 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long30 --temp=1 --wdecay=0.001

(test acc. 62.44, 50 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --epochs=50 --hidden_size=64 --lr=0.001 --module_init=most_likely --multihead=gated_linear --n_tasks=100 --seed=180 --task_sequence=s_long30 --wdecay=0.001

(test acc. 64.58, 64 modules)


Stream Slong -- 100 tasks

LMC (task aware)

python main_transfer.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=4 --epochs=100 --hidden_size=64 --init_oh=none --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=most_likely --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=100 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=1 --running_stats_steps=50 --seed=180 --str_prior_factor=1 --str_prior_temp=0.01 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=0 --task_sequence=s_long --temp=1 --pr_name s_long_cr --wdecay=0

(test acc. 63.88, 32 modules)

MNTDP (task aware)

python main_transfer_mntdp.py --momentum_bn 0.1 --n_tasks 100 --hidden_size 64 --searchspace topdown --keep_bn_in_eval_after_freeze 1 --pr_name s_long_cr --copy_batchstats 1 --track_running_stats_bn 1 --wand_notes correct_MNTDP --task_sequence s_long --gating MNTDP --shuffle_test 0 --epochs 50 --lr 1e-3 --wdecay 1e-3

(test acc. 68.92, 142 modules)


OOD generalization experiments

LMC

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=10 --no_projection_phase 0 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0 --task_agnostic_test=0

EWC

python main_transfer.py --epochs=50 --ewc=1000 --hidden_size=256 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --pr_name lmc_cr --multihead=usual --normalize_data=1  --task_sequence=s_ood --use_structural=0 --wdecay=0 --projection_phase_length=0

MNTDP

python main_transfer_mntdp.py --epochs=50 --regenerate_seed 0 --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --pr_name lmc_cr --lr=0.01 --module_init=none --multihead=usual --normalize_data=1 --task_sequence=s_ood --use_structural=0 --wdecay=0

LMC (no projetion)

python main_transfer.py --regenerate_seed 0 --deviation_threshold=8 --epochs=50 --pr_name lmc_cr --hidden_size=64 --keep_bn_in_eval_after_freeze=0 --lr=0.001 --module_init=none --momentum_bn_decoder=0.1 --normalize_data=1 --optmize_structure_only_free_modules=0 --projection_phase_length=0 --no_projection_phase 1 --reg_factor=10 --running_stats_steps=1000 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=linear_no_act --task_sequence=s_ood --temp=1 --wdecay=0

Plug and play (combining independently trained modular learners)

python main_plug_and_play.py --activate_after_str_oh=0 --activation_structural=sigmoid --deviation_threshold=1.5 --early_stop_complete=0 --epochs=100 --epochs_str_only_after_addition=1 --pr_name lmc_cr --hidden_size=64 --init_oh=none --init_runingstats_on_addition=1 --keep_bn_in_eval_after_freeze=1 --lr=0.001 --module_init=mean --momentum_bn=0.1 --momentum_bn_decoder=0.1 --multihead=gated_linear --n_tasks=3 --normalize_oh=1 --optmize_structure_only_free_modules=1 --projection_layer_oh=0 --projection_phase_length=5 --reg_factor=10 --running_stats_steps=10 --str_prior_factor=1 --str_prior_temp=0.1 --structure_inv=ae --structure_inv_oh=linear_no_act --task_agnostic_test=1 --task_sequence=s_pnp_comp --temp=1 --wdecay=0.001

A list of hyperparameters used for other baselines can be found in the baselines.txt file.


References

Owner
Oleksiy Ostapenko
Oleksiy Ostapenko
Machine learning for NeuroImaging in Python

nilearn Nilearn enables approachable and versatile analyses of brain volumes. It provides statistical and machine-learning tools, with instructive doc

919 Dec 25, 2022
Learned Token Pruning for Transformers

LTP: Learned Token Pruning for Transformers Check our paper for more details. Installation We follow the same installation procedure as the original H

Sehoon Kim 52 Dec 29, 2022
ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectives

Status: Under development (expect bug fixes and huge updates) ShinRL: A Library for Evaluating RL Algorithms from Theoretical and Practical Perspectiv

37 Dec 28, 2022
Official implementation of the article "Unsupervised JPEG Domain Adaptation For Practical Digital Forensics"

Unsupervised JPEG Domain Adaptation for Practical Digital Image Forensics @WIFS2021 (Montpellier, France) Rony Abecidan, Vincent Itier, Jeremie Boulan

Rony Abecidan 6 Jan 06, 2023
Official PyTorch implementation of RobustNet (CVPR 2021 Oral)

RobustNet (CVPR 2021 Oral): Official Project Webpage Codes and pretrained models will be released soon. This repository provides the official PyTorch

Sungha Choi 173 Dec 21, 2022
Implementation of Bottleneck Transformer in Pytorch

Bottleneck Transformer - Pytorch Implementation of Bottleneck Transformer, SotA visual recognition model with convolution + attention that outperforms

Phil Wang 621 Jan 06, 2023
Deep functional residue identification

DeepFRI Deep functional residue identification Citing @article {Gligorijevic2019, author = {Gligorijevic, Vladimir and Renfrew, P. Douglas and Koscio

Flatiron Institute 156 Dec 25, 2022
TANL: Structured Prediction as Translation between Augmented Natural Languages

TANL: Structured Prediction as Translation between Augmented Natural Languages Code for the paper "Structured Prediction as Translation between Augmen

98 Dec 15, 2022
Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT).

Active Learning with the Nvidia TLT Tutorial on active learning with the Nvidia Transfer Learning Toolkit (TLT). In this tutorial, we will show you ho

Lightly 25 Dec 03, 2022
Neural Scene Flow Fields using pytorch-lightning, with potential improvements

nsff_pl Neural Scene Flow Fields using pytorch-lightning. This repo reimplements the NSFF idea, but modifies several operations based on observation o

AI葵 178 Dec 21, 2022
Research - dataset and code for 2016 paper Learning a Driving Simulator

the people's comma the paper Learning a Driving Simulator the comma.ai driving dataset 7 and a quarter hours of largely highway driving. Enough to tra

comma.ai 4.1k Jan 02, 2023
TFOD-MASKRCNN - Tensorflow MaskRCNN With Python

Tensorflow- MaskRCNN Steps git clone https://github.com/amalaj7/TFOD-MASKRCNN.gi

Amal Ajay 2 Jan 18, 2022
PyTorch implementation of the Quasi-Recurrent Neural Network - up to 16 times faster than NVIDIA's cuDNN LSTM

Quasi-Recurrent Neural Network (QRNN) for PyTorch Updated to support multi-GPU environments via DataParallel - see the the multigpu_dataparallel.py ex

Salesforce 1.3k Dec 28, 2022
Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Optimization Algorithm,Immune Algorithm, Artificial Fish Swarm Algorithm, Differential Evolution and TSP(Traveling salesman)

scikit-opt Swarm Intelligence in Python (Genetic Algorithm, Particle Swarm Optimization, Simulated Annealing, Ant Colony Algorithm, Immune Algorithm,A

郭飞 3.7k Jan 03, 2023
Multiview 3D object detection on MultiviewC dataset through moft3d.

Voxelized 3D Feature Aggregation for Multiview Detection [arXiv] Multiview 3D object detection on MultiviewC dataset through VFA. Introduction We prop

Jiahao Ma 20 Dec 21, 2022
Python Jupyter kernel using Poetry for reproducible notebooks

Poetry Kernel Use per-directory Poetry environments to run Jupyter kernels. No need to install a Jupyter kernel per Python virtual environment! The id

Pathbird 204 Jan 04, 2023
Improving Machine Translation Systems via Isotopic Replacement

CAT (Improving Machine Translation Systems via Isotopic Replacement) Machine translation plays an essential role in people’s daily international commu

Zeyu Sun 10 Nov 30, 2022
This is a simple framework to make object detection dataset very quickly

FastAnnotation Table of contents General info Requirements Setup General info This is a simple framework to make object detection dataset very quickly

Serena Tetart 1 Jan 24, 2022
Interactive web apps created using geemap and streamlit

geemap-apps Introduction This repo demostrates how to build a multi-page Earth Engine App using streamlit and geemap. You can deploy the app on variou

Qiusheng Wu 27 Dec 23, 2022
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022