EOD Historical Data Python Library (Unofficial)

Overview

EOD Historical Data Python Library (Unofficial)

https://eodhistoricaldata.com

Installation

python3 -m pip install eodhistoricaldata

Note

Demo API key below is provided by EOD Historial Data for testing purposes https://eodhistoricaldata.com/financial-apis/new-real-time-data-api-websockets

Usage

None: """Main""" websocket = WebSocketClient( # Demo API key for testing purposes api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="crypto", symbols=["BTC-USD"] #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="forex", symbols=["EURUSD"] #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="us", symbols=["AAPL"] ) websocket.start() message_count = 0 while True: if websocket: if ( message_count != websocket.message_count ): print(websocket.message) message_count = websocket.message_count sleep(0.25) # output every 1/4 second, websocket is realtime if __name__ == "__main__": main() ">
"""Sample script"""

from time import sleep
from eodhistoricaldata import WebSocketClient

def main() -> None:
    """Main"""

    websocket = WebSocketClient(
        # Demo API key for testing purposes
        api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="crypto", symbols=["BTC-USD"]
        #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="forex", symbols=["EURUSD"]
        #api_key="OeAFFmMliFG5orCUuwAKQ8l4WWFQ67YX", endpoint="us", symbols=["AAPL"]
    )
    websocket.start()

    message_count = 0
    while True:
        if websocket:
            if (
                message_count != websocket.message_count
            ):
                print(websocket.message)
                message_count = websocket.message_count
                sleep(0.25)  # output every 1/4 second, websocket is realtime

if __name__ == "__main__":
    main()
You might also like...
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data
TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI) data

tedana: TE Dependent ANAlysis TE-dependent analysis (tedana) is a Python library for denoising multi-echo functional magnetic resonance imaging (fMRI)

Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.
Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data.

Hatchet Hatchet is a Python-based library that allows Pandas dataframes to be indexed by structured tree and graph data. It is intended for analyzing

 🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.
🧪 Panel-Chemistry - exploratory data analysis and build powerful data and viz tools within the domain of Chemistry using Python and HoloViz Panel.

🧪📈 🐍. The purpose of the panel-chemistry project is to make it really easy for you to do DATA ANALYSIS and build powerful DATA AND VIZ APPLICATIONS within the domain of Chemistry using using Python and HoloViz Panel.

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code

Tuplex is a parallel big data processing framework that runs data science pipelines written in Python at the speed of compiled code. Tuplex has similar Python APIs to Apache Spark or Dask, but rather than invoking the Python interpreter, Tuplex generates optimized LLVM bytecode for the given pipeline and input data set.

Python data processing, analysis, visualization, and data operations

Python This is a Python data processing, analysis, visualization and data operations of the source code warehouse, book ISBN: 9787115527592 Descriptio

Catalogue data - A Python Scripts to prepare catalogue data

catalogue_data Scripts to prepare catalogue data. Setup Clone this repo. Install

fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.
fds is a tool for Data Scientists made by DAGsHub to version control data and code at once.

Fast Data Science, AKA fds, is a CLI for Data Scientists to version control data and code at once, by conveniently wrapping git and dvc

A data parser for the internal syncing data format used by Fog of World.
A data parser for the internal syncing data format used by Fog of World.

A data parser for the internal syncing data format used by Fog of World. The parser is not designed to be a well-coded library with good performance, it is more like a demo for showing the data structure.

Functional Data Analysis, or FDA, is the field of Statistics that analyses data that depend on a continuous parameter.
Comments
  • Syntax issue with query Parameter in get_calendar_ functions

    Syntax issue with query Parameter in get_calendar_ functions

    Hello,

    When using the get_calendar_XXX, functions we cannot use the query parameters defined by EOD as the word "from" is forbidden by Python, for instance : earning=client.get_calendar_earnings(from='2022-11-01', to='2022-11-30')

    will raise an issue.

    Should I pass the argument differently ?

    opened by ATCBGroup 1
  • dependency on matplotlib but it is not installed with pip

    dependency on matplotlib but it is not installed with pip

    dependency on matplotlib but it is not installed with pip

    [email protected]:~/git/traderai/eod$ cat test.py
    from eodhd import APIClient
    api = APIClient("DEMO")
    
    [email protected]:~/git/traderai/eod$ python3 test.py
    Traceback (most recent call last):
      File "/home/mshamber/.local/lib/python3.8/site-packages/eodhd/eodhdgraphs.py", line 5, in <module>
        import matplotlib.pyplot as plt
    ModuleNotFoundError: No module named 'matplotlib'
    
    [email protected]:~/git/traderai/eod$ python3 -m pip install eodhd
    Requirement already satisfied: eodhd in /home/mshamber/.local/lib/python3.8/site-packages (1.0.8)
    Requirement already satisfied: websocket-client==1.3.3 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.3.3)
    Requirement already satisfied: rich==12.5.1 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (12.5.1)
    Requirement already satisfied: websockets==10.3 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (10.3)
    Requirement already satisfied: numpy==1.21.6 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.21.6)
    Requirement already satisfied: pandas==1.3.5 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (1.3.5)
    Requirement already satisfied: requests==2.28.1 in /home/mshamber/.local/lib/python3.8/site-packages (from eodhd) (2.28.1)
    Requirement already satisfied: commonmark<0.10.0,>=0.9.0 in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (0.9.1)
    Requirement already satisfied: typing-extensions<5.0,>=4.0.0; python_version < "3.9" in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (4.3.0)
    Requirement already satisfied: pygments<3.0.0,>=2.6.0 in /home/mshamber/.local/lib/python3.8/site-packages (from rich==12.5.1->eodhd) (2.13.0)
    Requirement already satisfied: python-dateutil>=2.7.3 in /home/mshamber/.local/lib/python3.8/site-packages (from pandas==1.3.5->eodhd) (2.8.2)
    Requirement already satisfied: pytz>=2017.3 in /home/mshamber/.local/lib/python3.8/site-packages (from pandas==1.3.5->eodhd) (2022.5)
    Requirement already satisfied: charset-normalizer<3,>=2 in /home/mshamber/.local/lib/python3.8/site-packages (from requests==2.28.1->eodhd) (2.1.1)
    Requirement already satisfied: idna<4,>=2.5 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (2.8)
    Requirement already satisfied: certifi>=2017.4.17 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (2019.11.28)
    Requirement already satisfied: urllib3<1.27,>=1.21.1 in /usr/lib/python3/dist-packages (from requests==2.28.1->eodhd) (1.25.8)
    Requirement already satisfied: six>=1.5 in /home/mshamber/.local/lib/python3.8/site-packages (from python-dateutil>=2.7.3->pandas==1.3.5->eodhd) (1.16.0)
    
    opened by opme 1
Releases(1.0.8)
Owner
Michael Whittle
Solution Architect
Michael Whittle
Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine

Statistical Rethinking: A Bayesian Course Using CmdStanPy and Plotnine Intro This repo contains the python/stan version of the Statistical Rethinking

Andrés Suárez 3 Nov 08, 2022
Collections of pydantic models

pydantic-collections The pydantic-collections package provides BaseCollectionModel class that allows you to manipulate collections of pydantic models

Roman Snegirev 20 Dec 26, 2022
CINECA molecular dynamics tutorial set

High Performance Molecular Dynamics Logging into CINECA's computer systems To logon to the M100 system use the following command from an SSH client ss

J. W. Dell 0 Mar 13, 2022
Top 50 best selling books on amazon

It's a dashboard that shows the detailed information about each book in the top 50 best selling books on amazon over the last ten years

Nahla Tarek 1 Nov 18, 2021
Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Python dataset creator to construct datasets composed of OpenFace extracted features and Shimmer3 GSR+ Sensor datas

Gabriele 3 Jul 05, 2022
AWS Glue ETL Code Samples

AWS Glue ETL Code Samples This repository has samples that demonstrate various aspects of the new AWS Glue service, as well as various AWS Glue utilit

AWS Samples 1.2k Jan 03, 2023
ToeholdTools is a Python package and desktop app designed to facilitate analyzing and designing toehold switches, created as part of the 2021 iGEM competition.

ToeholdTools Category Status Repository Package Build Quality A library for the analysis of toehold switch riboregulators created by the iGEM team Cit

0 Dec 01, 2021
Additional tools for particle accelerator data analysis and machine information

PyLHC Tools This package is a collection of useful scripts and tools for the Optics Measurements and Corrections group (OMC) at CERN. Documentation Au

PyLHC 3 Apr 13, 2022
Used for data processing in machine learning, and help us to construct ML model more easily from scratch

Used for data processing in machine learning, and help us to construct ML model more easily from scratch. Can be used in linear model, logistic regression model, and decision tree.

ShawnWang 0 Jul 05, 2022
Streamz helps you build pipelines to manage continuous streams of data

Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedbac

Python Streamz 1.1k Dec 28, 2022
Python ELT Studio, an application for building ELT (and ETL) data flows.

The Python Extract, Load, Transform Studio is an application for performing ELT (and ETL) tasks. Under the hood the application consists of a two parts.

Schlerp 55 Nov 18, 2022
A distributed block-based data storage and compute engine

Nebula is an extremely-fast end-to-end interactive big data analytics solution. Nebula is designed as a high-performance columnar data storage and tabular OLAP engine.

Columns AI 131 Dec 26, 2022
Generate lookml for views from dbt models

dbt2looker Use dbt2looker to generate Looker view files automatically from dbt models. Features Column descriptions synced to looker Dimension for eac

lightdash 126 Dec 28, 2022
Tools for the analysis, simulation, and presentation of Lorentz TEM data.

ltempy ltempy is a set of tools for Lorentz TEM data analysis, simulation, and presentation. Features Single Image Transport of Intensity Equation (SI

McMorran Lab 1 Dec 26, 2022
Wafer Fault Detection - Wafer circleci with python

Wafer Fault Detection Problem Statement: Wafer (In electronics), also called a slice or substrate, is a thin slice of semiconductor, such as a crystal

Avnish Yadav 14 Nov 21, 2022
follow-analyzer helps GitHub users analyze their following and followers relationship

follow-analyzer follow-analyzer helps GitHub users analyze their following and followers relationship by providing a report in html format which conta

Yin-Chiuan Chen 2 May 02, 2022
Handle, manipulate, and convert data with units in Python

unyt A package for handling numpy arrays with units. Often writing code that deals with data that has units can be confusing. A function might return

The yt project 304 Jan 02, 2023
Pipeline and Dataset helpers for complex algorithm evaluation.

tpcp - Tiny Pipelines for Complex Problems A generic way to build object-oriented datasets and algorithm pipelines and tools to evaluate them pip inst

Machine Learning and Data Analytics Lab FAU 3 Dec 07, 2022
This is a repo documenting the best practices in PySpark.

Spark-Syntax This is a public repo documenting all of the "best practices" of writing PySpark code from what I have learnt from working with PySpark f

Eric Xiao 447 Dec 25, 2022
BIGDATA SIMULATION ONE PIECE WORLD CENSUS

ONE PIECE is a Japanese manga of great international success. The story turns inhabited in a fictional world, tells the adventures of a young man whose body gained rubber properties after accidentall

Maycon Cypriano 3 Jun 30, 2022