Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

Overview

MobileViT

RegNet

Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER.


Table of Contents


Model Architecture

Trulli

MobileViT Architecture

Usage

Training

python main.py
optional arguments:
  -h, --help            show this help message and exit
  --gpu_device GPU_DEVICE
                        Select specific GPU to run the model
  --batch-size N        Input batch size for training (default: 64)
  --epochs N            Number of epochs to train (default: 20)
  --num-class N         Number of classes to classify (default: 10)
  --lr LR               Learning rate (default: 0.01)
  --weight-decay WD     Weight decay (default: 1e-5)
  --model-path PATH     Path to save the model

Citation

@InProceedings{Sachin2021,
  title = {MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER},
  author = {Sachin Mehta and Mohammad Rastegari},
  booktitle = {},
  year = {2021}
}

If this implement have any problem please let me know, thank you.

Comments
  • Training settings

    Training settings

    I really appreciate your efforts in implementing this model in pytorch. Here, I have one concern about the training settings. If what I understand is correct, you just trained the model for less than 5 epoches.

    In addition, the hyper-parameters you adopted is different from that in the original article. For instance, in the original manuscript, authors train mobilevit using AdamW optimizer, label smoothing cross-entry and multi-scale sampler. The training phase has a warmup stage.

    I also found that the classificaion accuracy provided here is much lower than that in the original version.

    I conjecture that the gab between accuracies are caused by different training settings.

    opened by hkzhang91 6
  • load pretrain weight failed

    load pretrain weight failed

    import torch
    import models
    
    model = models.MobileViT_S()
    PATH = "./MobileVit-S.pth.tar"
    weights = torch.load(PATH, map_location=lambda storage, loc: storage)
    model.load_state_dict(weights['state_dict'])
    model.eval()
    torch.save(model, './model.pt')
    
    • I try to load the pre-train weight to test one demo; but the network structure does not seem to match the weights, is there any solution?

    image

    opened by hererookie 2
  • model training hyperparameter

    model training hyperparameter

    A problem has been bothering me. the learning rate, optimizer, batch_size, L2 regularization, label smoothing and epochs are inconsistent with the paper. How should I modify the code?

    opened by Agino-ltp 1
  • Have you test MobileVit on cifar-10?

    Have you test MobileVit on cifar-10?

    Thanks for your wonderful work!

    I prepare to try MobileVit on small dataset, such as MNIST, and I need adjust the network structure. Before this work, I want to know if MobileVit has a better performance than other networks on small dataset.

    I notice "get_cifar10_dataset" in utils.py. Have you tested MobileVit on cifar-10? If you have, could you please show me the accuracy and inference time result?

    opened by Jerryme-xxm 1
  • Issues when loading MobileViT_S()

    Issues when loading MobileViT_S()

    I wanted to load the MobileViT_S() model and use the pre-trained weights, but I have got some errors in my code. To make it easier and help others, I will share my solution (in case there will be someone who is beginner like me):

    def load_mobilevit_weights(model_path):
      # Create an instance of the MobileViT model
      net = MobileViT_S()
      
      # Load the PyTorch state_dict
      state_dict = torch.load(model_path, map_location=torch.device('cpu'))['state_dict']
      
      # Since there is a problem in the names of layers, we will change the keys to meet the MobileViT model architecture
      for key in list(state_dict.keys()):
        state_dict[key.replace('module.', '')] = state_dict.pop(key)
      
      # Once the keys are fixed, we can modify the parameters of MobileViT
      net.load_state_dict(state_dict)
      
      return net
    
    net = load_mobilevit_weights("MobileViT_S_model_best.pth.tar")
    
    opened by Sehaba95 4
Releases(weight)
Owner
Hong-Jia Chen
Master student at National Chung Cheng University, Taiwan. Interested in Deep Learning and Computer Vision.
Hong-Jia Chen
CVPR2022 (Oral) - Rethinking Semantic Segmentation: A Prototype View

Rethinking Semantic Segmentation: A Prototype View Rethinking Semantic Segmentation: A Prototype View, Tianfei Zhou, Wenguan Wang, Ender Konukoglu and

Tianfei Zhou 239 Dec 26, 2022
OpenDelta - An Open-Source Framework for Paramter Efficient Tuning.

OpenDelta is a toolkit for parameter efficient methods (we dub it as delta tuning), by which users could flexibly assign (or add) a small amount parameters to update while keeping the most paramters

THUNLP 386 Dec 26, 2022
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
CRNN With PyTorch

CRNN-PyTorch Implementation of https://arxiv.org/abs/1507.05717

Vadim 4 Sep 01, 2022
Use unsupervised and supervised learning to predict stocks

AIAlpha: Multilayer neural network architecture for stock return prediction This project is meant to be an advanced implementation of stacked neural n

Vivek Palaniappan 1.5k Jan 06, 2023
Python implementation of "Elliptic Fourier Features of a Closed Contour"

PyEFD An Python/NumPy implementation of a method for approximating a contour with a Fourier series, as described in [1]. Installation pip install pyef

Henrik Blidh 71 Dec 09, 2022
Real-time VIBE: Frame by Frame Inference of VIBE (Video Inference for Human Body Pose and Shape Estimation)

Real-time VIBE Inference VIBE frame-by-frame. Overview This is a frame-by-frame inference fork of VIBE at [https://github.com/mkocabas/VIBE]. Usage: i

23 Jul 02, 2022
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
Python module providing a framework to trace individual edges in an image using Gaussian process regression.

Edge Tracing using Gaussian Process Regression Repository storing python module which implements a framework to trace individual edges in an image usi

Jamie Burke 7 Dec 27, 2022
Koç University deep learning framework.

Knet Knet (pronounced "kay-net") is the Koç University deep learning framework implemented in Julia by Deniz Yuret and collaborators. It supports GPU

1.4k Dec 31, 2022
Transformer part of 12th place solution in Riiid! Answer Correctness Prediction

kaggle_riiid Transformer part of 12th place solution in Riiid! Answer Correctness Prediction. Please see here for more information. Execution You need

Sakami Kosuke 2 Apr 23, 2022
Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

Mikhail Grankin 768 Jan 01, 2023
A PyTorch implementation of deep-learning-based registration

DiffuseMorph Implementation A PyTorch implementation of deep-learning-based registration. Requirements OS : Ubuntu / Windows Python 3.6 PyTorch 1.4.0

24 Jan 03, 2023
DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection

DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Object Detection Code for our Paper DAFNe: A One-Stage Anchor-Free Deep Model for Oriented Obje

Steven Lang 58 Dec 19, 2022
Research code of ICCV 2021 paper "Mesh Graphormer"

MeshGraphormer ✨ ✨ This is our research code of Mesh Graphormer. Mesh Graphormer is a new transformer-based method for human pose and mesh reconsructi

Microsoft 251 Jan 08, 2023
This repo contains the source code and a benchmark for predicting user's utilities with Machine Learning techniques for Computational Persuasion

Machine Learning for Argument-Based Computational Persuasion This repo contains the source code and a benchmark for predicting user's utilities with M

Ivan Donadello 4 Nov 07, 2022
Learning cell communication from spatial graphs of cells

ncem Features Repository for the manuscript Fischer, D. S., Schaar, A. C. and Theis, F. Learning cell communication from spatial graphs of cells. 2021

Theis Lab 77 Dec 30, 2022
ML-Ensemble – high performance ensemble learning

A Python library for high performance ensemble learning ML-Ensemble combines a Scikit-learn high-level API with a low-level computational graph framew

Sebastian Flennerhag 764 Dec 31, 2022
SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020, Oral)

SEAN: Image Synthesis with Semantic Region-Adaptive Normalization (CVPR 2020 Oral) Figure: Face image editing controlled via style images and segmenta

Peihao Zhu 579 Dec 30, 2022
This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

This is the implementation of our work Deep Extreme Cut (DEXTR), for object segmentation from extreme points.

Sergi Caelles 828 Jan 05, 2023