Unofficial PyTorch implementation of MobileViT based on paper "MobileViT: Light-weight, General-purpose, and Mobile-friendly Vision Transformer".

Overview

MobileViT

RegNet

Unofficial PyTorch implementation of MobileViT based on paper MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER.


Table of Contents


Model Architecture

Trulli

MobileViT Architecture

Usage

Training

python main.py
optional arguments:
  -h, --help            show this help message and exit
  --gpu_device GPU_DEVICE
                        Select specific GPU to run the model
  --batch-size N        Input batch size for training (default: 64)
  --epochs N            Number of epochs to train (default: 20)
  --num-class N         Number of classes to classify (default: 10)
  --lr LR               Learning rate (default: 0.01)
  --weight-decay WD     Weight decay (default: 1e-5)
  --model-path PATH     Path to save the model

Citation

@InProceedings{Sachin2021,
  title = {MOBILEVIT: LIGHT-WEIGHT, GENERAL-PURPOSE, AND MOBILE-FRIENDLY VISION TRANSFORMER},
  author = {Sachin Mehta and Mohammad Rastegari},
  booktitle = {},
  year = {2021}
}

If this implement have any problem please let me know, thank you.

Comments
  • Training settings

    Training settings

    I really appreciate your efforts in implementing this model in pytorch. Here, I have one concern about the training settings. If what I understand is correct, you just trained the model for less than 5 epoches.

    In addition, the hyper-parameters you adopted is different from that in the original article. For instance, in the original manuscript, authors train mobilevit using AdamW optimizer, label smoothing cross-entry and multi-scale sampler. The training phase has a warmup stage.

    I also found that the classificaion accuracy provided here is much lower than that in the original version.

    I conjecture that the gab between accuracies are caused by different training settings.

    opened by hkzhang91 6
  • load pretrain weight failed

    load pretrain weight failed

    import torch
    import models
    
    model = models.MobileViT_S()
    PATH = "./MobileVit-S.pth.tar"
    weights = torch.load(PATH, map_location=lambda storage, loc: storage)
    model.load_state_dict(weights['state_dict'])
    model.eval()
    torch.save(model, './model.pt')
    
    • I try to load the pre-train weight to test one demo; but the network structure does not seem to match the weights, is there any solution?

    image

    opened by hererookie 2
  • model training hyperparameter

    model training hyperparameter

    A problem has been bothering me. the learning rate, optimizer, batch_size, L2 regularization, label smoothing and epochs are inconsistent with the paper. How should I modify the code?

    opened by Agino-ltp 1
  • Have you test MobileVit on cifar-10?

    Have you test MobileVit on cifar-10?

    Thanks for your wonderful work!

    I prepare to try MobileVit on small dataset, such as MNIST, and I need adjust the network structure. Before this work, I want to know if MobileVit has a better performance than other networks on small dataset.

    I notice "get_cifar10_dataset" in utils.py. Have you tested MobileVit on cifar-10? If you have, could you please show me the accuracy and inference time result?

    opened by Jerryme-xxm 1
  • Issues when loading MobileViT_S()

    Issues when loading MobileViT_S()

    I wanted to load the MobileViT_S() model and use the pre-trained weights, but I have got some errors in my code. To make it easier and help others, I will share my solution (in case there will be someone who is beginner like me):

    def load_mobilevit_weights(model_path):
      # Create an instance of the MobileViT model
      net = MobileViT_S()
      
      # Load the PyTorch state_dict
      state_dict = torch.load(model_path, map_location=torch.device('cpu'))['state_dict']
      
      # Since there is a problem in the names of layers, we will change the keys to meet the MobileViT model architecture
      for key in list(state_dict.keys()):
        state_dict[key.replace('module.', '')] = state_dict.pop(key)
      
      # Once the keys are fixed, we can modify the parameters of MobileViT
      net.load_state_dict(state_dict)
      
      return net
    
    net = load_mobilevit_weights("MobileViT_S_model_best.pth.tar")
    
    opened by Sehaba95 4
Releases(weight)
Owner
Hong-Jia Chen
Master student at National Chung Cheng University, Taiwan. Interested in Deep Learning and Computer Vision.
Hong-Jia Chen
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
XViT - Space-time Mixing Attention for Video Transformer

XViT - Space-time Mixing Attention for Video Transformer This is the official implementation of the XViT paper: @inproceedings{bulat2021space, title

Adrian Bulat 33 Dec 23, 2022
Code for CVPR2021 paper "Robust Reflection Removal with Reflection-free Flash-only Cues"

Robust Reflection Removal with Reflection-free Flash-only Cues (RFC) Paper | To be released: Project Page | Video | Data Tensorflow implementation for

Chenyang LEI 162 Jan 05, 2023
Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

Based on Yolo's low-power, ultra-lightweight universal target detection algorithm, the parameter is only 250k, and the speed of the smart phone mobile terminal can reach ~300fps+

567 Dec 26, 2022
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning

We challenge a common assumption underlying most supervised deep learning: that a model makes a prediction depending only on its parameters and the features of a single input. To this end, we introdu

OATML 360 Dec 28, 2022
Code release for "COTR: Correspondence Transformer for Matching Across Images"

COTR: Correspondence Transformer for Matching Across Images This repository contains the inference code for COTR. We plan to release the training code

UBC Computer Vision Group 360 Jan 06, 2023
Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow.

Denoised-Smoothing-TF Minimal implementation of Denoised Smoothing: A Provable Defense for Pretrained Classifiers in TensorFlow. Denoised Smoothing is

Sayak Paul 19 Dec 11, 2022
Python implementation of the multistate Bennett acceptance ratio (MBAR)

pymbar Python implementation of the multistate Bennett acceptance ratio (MBAR) method for estimating expectations and free energy differences from equ

Chodera lab // Memorial Sloan Kettering Cancer Center 169 Dec 02, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer"

SCGAN Implementation of CVPR 2021 paper "Spatially-invariant Style-codes Controlled Makeup Transfer" Prepare The pre-trained model is avaiable at http

118 Dec 12, 2022
In-Place Activated BatchNorm for Memory-Optimized Training of DNNs

In-Place Activated BatchNorm In-Place Activated BatchNorm for Memory-Optimized Training of DNNs In-Place Activated BatchNorm (InPlace-ABN) is a novel

1.3k Dec 29, 2022
Implementation of the Point Transformer layer, in Pytorch

Point Transformer - Pytorch Implementation of the Point Transformer self-attention layer, in Pytorch. The simple circuit above seemed to have allowed

Phil Wang 501 Jan 03, 2023
Simulating an AI playing 2048 using the Expectimax algorithm

2048-expectimax Simulating an AI playing 2048 using the Expectimax algorithm The base game engine uses code from here. The AI player is modeled as a m

Subha Ramesh 2 Jan 31, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted)

NLOS-OT Official implementation of NLOS-OT: Passive Non-Line-of-Sight Imaging Using Optimal Transport (IEEE TIP, accepted) Description In this reposit

Ruixu Geng(耿瑞旭) 16 Dec 16, 2022
Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy"

Shapeland Simulator Source code to accompany Defunctland's video "FASTPASS: A Complicated Legacy" Download the video at https://www.youtube.com/watch?

TouringPlans.com 70 Dec 14, 2022
Face Detection and Alignment using Multi-task Cascaded Convolutional Networks (MTCNN)

Face-Detection-with-MTCNN Face detection is a computer vision problem that involves finding faces in photos. It is a trivial problem for humans to sol

Chetan Hirapara 3 Oct 07, 2022
Magic tool for managing internet connection in local network by @zalexdev

Megacut ✂️ A new powerful Python3 tool for managing internet on a local network Installation git clone https://github.com/stryker-project/megacut cd m

Stryker 12 Dec 15, 2022