The Python3 import playground

Overview

The Python3 import playground

I have been confused about python modules and packages, this text tries to clear the topic up a bit.

Sources:

https://chrisyeh96.github.io/2017/08/08/definitive-guide-python-imports.html
https://abarker.github.io/understanding_python_imports/ 
https://stackoverflow.com/questions/44834/can-someone-explain-all-in-python
https://docs.python.org/3/reference/import.html
https://stackoverflow.com/questions/43059267/how-to-do-from-module-import-using-importlib

Modules

Each file with extension .py can be used as a module. The module is in source file module_source.py, while it is imported as import module_source. In this example, both the module source file and the importing file are in the same directory.

Lets import the module. (the module source includes a print statement print("module_foo is being imported"))

>> import module_foo module_foo is being imported >>> print("after: import module_foo") after: import module_foo">
>>> print("before: import module_foo")
before: import module_foo
>>> import module_foo
module_foo is being imported
>>> print("after: import module_foo")
after: import module_foo

The imported module is being parsed and run during the import statement. Python is a dynamic language, and there is no way to determine the interface of a module, without running it. This can have it's uses: you can add some module specific initialisations in the global scope of the module, these are run just once at import time.

Often you can see the following lines in some python code:

if __name__ == '__main__':
  run_main_function()

This means that the function run_main_function will be run only when the file is run as a script (meaning it is run as python3 module_file.py), __name__ is a built-in variable that holds the name of the current module, it defaults to "__main__" for the file that is directly run by the python interpreter.

How does the module look like on the importing side?

>>> import module_foo
>>>
>>> print(type(module_foo))

   

   

A variable with the same name as the imported module is defined implicitly by the python runtime, and it is of type .

  • lets use the interface that is exported by the module; all functions defined in the module are accessed via the module name followed by a dot.
foo = module_foo.Foo("gadget")
print(foo)

module_foo.print_foo("some stuff: ", 42)
  • Lets take a look at the properties of the module_foo variable
>>> print("module_foo.__dict__ keys: ", ", ".join(module_foo.__dict__.keys()))
module_foo.__dict__ keys:  __name__, __doc__, __package__, __loader__, __spec__, __file__, __cached__, __builtins__, datetime, Foo, print_foo, _internal_print

This print statements shows all keys of the ___dict__ attribute for the import module variable. The __dict__ attribute is a dictionary and it maps the names of object instance variables names to their value.

A more cultured way of accessing this information is the built-in dir function; The documentation says that for a module object the following info is returned If the object is a module object, the list contains the names of the module’s attributes.

module_foo.__dict__ key: Foo value-type: module_foo.__dict__ key: print_foo value-type: module_foo.__dict__ key: _internal_print value-type: ">
>>> for key, value in module_foo.__dict__.items():
...     print("module_foo.__dict__ key: ", key, "value-type: ", type(value))
...

module_foo.__dict__ key:  datetime value-type:  
      
       
module_foo.__dict__ key:  Foo value-type:  
       
        
module_foo.__dict__ key:  print_foo value-type:  
        
         
module_foo.__dict__ key:  _internal_print value-type:  
         

         
        
       
      

That makes sense: the call of module_foo.print_foo("some stuff: ", 42) is just a short form for a regular object call module_foo.__dict__['module_foo'].print_foo("some stuff :", 42) An imported module is just an instance of a module object, where each exported class or method is a member of that module object!

Interesting that even names with a leading underscore are visible via import of a module (although pylint is giving a warning if you use them, and this is regarded as very bad style). Importing from a package does not expose these symbols (unless defined in the __init__.py module)

Please note: in this case module_foo is also listing all modules imported by the imported module (like module datetime)

Where do we put the module source file?

An imported module must be a directory in the sys.path list, the current directory is always part of this list. You can add directories to sys.path by setting PYTHONPATH environment variable, before running python executable, or by explicitly adding your directory to sys.path, before calling import. (Example source imorting the module and source of the module

Import renames

There are other forms of import,

import module_foo as mfoo

Here the variable defined by the runtime is renamed to mfoo, and the code that uses the module looks as follows

mfoo.print_foo("some stuff: ", 42)

You will sometimes see the following kind of imports in both modules and packages.

import math as _math
import os as _os

This turns the imported package name into a private symbol, so that the import of packages will not turn into symbols when importing the module as follows; from module_name import * - this form of import adds all symbols from the module to the current namespace. See example

Import renames with directories

The import with rename feature can be used to access python files in subdirectores: module_foo_src is in a sub directory, relative to module_source.py See module source and module usage

import module_foo_src.module_foo as mfoo

Please note that you can only get into one directory level beneath any directory that is listed under the python import path. The import path includes the current directory of the main module,

Importing symbols info the namespace of the caller

You can import symbols selectively into the calling program, as follows:

from  module_foo import print_foo, Foo

print_foo("some stuff: ", 42)

However some say that this kind of import does not make the code more readable. The Google style guide does not recommend this approach.

You can also import all symbols from module_foo right into your own namespace

from module_foo import *

See example module and usage

Now this form of import has an interesting case: if the module source defines a list variable named __all__, then this variable lists all symbols exported by the module, it limits the list of symbols that can be imported with the * import. However this variable is only used for the from module_foo * import form, The example module does not list print_foo in it's __all__ variable, however it is still possible to import it by means of from module_foo import print_foo

Also the * import does not import symbols with leading underscores, these are respected as module private symbols.

Lots of details here...

Multiple imports

You can also import several packages from the same import statements, technically you can do

import os, sys as system, pathlib

However pylint gives you a warning for multiple imports in the same line, therefore it is not a good thing to do.

Exceptions that occur during module import

You get an ImportError exception if the python runtime ran into a problem during import. This can be used to choose between alternative versions of a library.

try:
    import re2 as re
except ImportError:
    import re

This example includes the re2 regular expression engine, if that is not installed, then it falls back to the compatible regular expression module re

However when the imported module did run code in its global scope that threw a regular error like ValueError, then you will get a ValueError exception.

Packages

Here again is an example package. source of package foo and example using package package_foo

A Directory with an __init__.py is a python package, this directory can include more than one python file, the idea of a package is to treat all the python files in this directory as a whole.

Once a package is imported: its __init__.py in that directory is implicitly run, in order to determine the interface of that package.

The __init.py__ module is run when a package is imported. The namespace of this module is made available to the importer of the package. Technically, importing a package is the same to importing the __init__.py module of a package. It's the same as:

import package_name.__init__  as package_name

Most of the following information will be very familiar from the previous explanation of modules:

An imported package foo must be a sub directory directly under any one of the directories listed in the sys.path list, the current directory is always part of that list.

>>> import sys
>>> print(sys.path)
['', '/Library/Frameworks/Python.framework/Versions/3.9/lib/python39.zip', '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9', '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/lib-dynload', '/Users/michaelmo/Library/Python/3.9/lib/python/site-packages', '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages']

The first entry is '', meaning the directory where the script file is in.

You can add directories to sys.path by setting PYTHONPATH environment variable, before running python executable, or by explicitly adding your directory to sys.path, before calling import.

>>> import sys
>>> print(type(sys))

   

   

At the importing side: and imported package is represented by a variable of type 'class module'; the namespace of that package (including built-in classes and functions) are part of package_name.__dict__

>>> import sys as system
>>> print(system.path)
['', '/Library/Frameworks/Python.framework/Versions/3.9/lib/python39.zip', '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9', '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/lib-dynload', '/Users/michaelmo/Library/Python/3.9/lib/python/site-packages', '/Library/Frameworks/Python.framework/Versions/3.9/lib/python3.9/site-packages']

import sys as system - this construct is renaming the variable of type 'class module', to act as an alias for the import name.

sys.modules - is a global variable, it's a dictionary that maps import name to variable of type , It stands for all currently imported modules and packages; import first checks if a package is already imported, to avoid loading the same package twice.

>>> import sys
>>> print(sys.modules.keys())
dict_keys(['sys', 'builtins', '_frozen_importlib', '_imp', '_thread', '_warnings', '_weakref', '_io', 'marshal', 'posix', '_frozen_importlib_external', 'time', 'zipimport', '_codecs', 'codecs', 'encodings.aliases', 'encodings', 'encodings.utf_8', '_signal', 'encodings.latin_1', '_abc', 'abc', 'io', '__main__', '_stat', 'stat', '_collections_abc', 'genericpath', 'posixpath', 'os.path', 'os', '_sitebuiltins', '_locale', '_bootlocale', 'site', 'readline', 'atexit', 'rlcompleter'])

This map is also listing all of the built-in modules.

>>> import _frozen_importlib
>>> print(_frozen_importlib.__doc__)
Core implementation of import.

This module is NOT meant to be directly imported! It has been designed such
that it can be bootstrapped into Python as the implementation of import. As
such it requires the injection of specific modules and attributes in order to
work. One should use importlib as the public-facing version of this module.

The __doc__ member of the module variable is the docstring defined for the module. Function objects also have such a member variable

Writing the __init__.py file

The tricky part in writing a package is the __init__.py file, this file has to import all other files as modules, as follows:

from  .file1 import  *

This is a relative import, it imports the module file1 in file1.py from the current directory, and adds all symbols to the namespace of the init.py file (except for names with a leading underscore, these are treated as package private names). Having these symbols as part of the __init__.py namespace is the condition for making these symbols available upon import.

A generic __init__.py file

I sometimes forget to include a module from the __init__.py file, so lets make a generic __init__.py file. See the result of this effort here in this example; _import_all is a function that imports all modules in the same directory as __init__.py, except for modules with a leading underscore in their name, as well as the __init__.py file itself. First it enumerates all such files with extension .py in that directory. Each relevant module is loaded explicitly via importlib.import_module, this function returns the module variable for the imported package.

Next, the namespace of that module is merged with the current namespace, it does so by enumerating all entries of the module variables __dict__ member, and add these to the global namespace returned by the global() built-in function.

The function also builds the __all__ member of the package, if an __all__ global variable has been defined in the module, then it is appended to the __all__ list of the __init__.py file.

The _import_all function from this example is a nice generic function, it buys you some convenience at the expense of the time to load the module, but this kind of trade off is very frequent in computing...

Packages with sub packages

An example of a package with sub-packages package source and package usage

├── package_foo
│   ├── __init__.py
│   ├── sub_package_one
│   │   ├── __init__.py
│   │   └── file1.py
│   └── sub_package_two
│       ├── __init__.py
│       └── file2.py
├── use_foo.py
└── use_module_import.py

Here the __init__.py file of the main package needs to import the sub packages into its namespace. It is not possible to import a sub package selectively, you can import package directories that are directly under any one of the directories in the module search path (that includes the current directory)

from  .sub_package_one import  *
from  .sub_package_two import  *

The curious case of the empty __init__.py file

Sometimes there is an empty ___init__.py file in the package_foo directory. That enables us to do directly import the sub package files

import package_foo.sub_package_one as sub_package_one

foo = sub_package_one.Foo("gadget")

The idea is that package_foo needs an __init__.py file in order to count as a package, without such a file, a package import would fail prior to python version 3.3, and you could not resolve the import path package_foo.sub_package_one for this reason. This problem is then solved with an empty __init__.py file in the package_foo directory. However this changed with with Python3.3, for later versions you no longer need the empty __init__.py file, an import of a directory without __init__.py does not fail for later versions.

Conclusion

I hope that this text has cleared the topic of python import system. Python is a relatively simple language, however there are a lot of usage patterns that one has to get used to. These are not always obvious from the python documentation.

Owner
Michael Moser
Michael Moser
Simple Python project using Opencv and datetime package to recognise faces and log attendance data in a csv file.

Attendance-System-based-on-Facial-recognition-Attendance-data-stored-in-csv-file- Simple Python project using Opencv and datetime package to recognise

3 Aug 09, 2022
A Deep Reinforcement Learning Framework for Stock Market Trading

DQN-Trading This is a framework based on deep reinforcement learning for stock market trading. This project is the implementation code for the two pap

61 Jan 01, 2023
[CVPR 2021] VirTex: Learning Visual Representations from Textual Annotations

VirTex: Learning Visual Representations from Textual Annotations Karan Desai and Justin Johnson University of Michigan CVPR 2021 arxiv.org/abs/2006.06

Karan Desai 533 Dec 24, 2022
Scripts and misc. stuff related to the PortSwigger Web Academy

PortSwigger Web Academy Notes Mostly scripts to automate the exploits. Going in the order of the recomended learning path - starting with SQLi. Commun

pageinsec 17 Dec 30, 2022
Unsupervised Learning of Video Representations using LSTMs

Unsupervised Learning of Video Representations using LSTMs Code for paper Unsupervised Learning of Video Representations using LSTMs by Nitish Srivast

Elman Mansimov 341 Dec 20, 2022
AI Face Mesh: This is a simple face mesh detection program based on Artificial intelligence.

AI Face Mesh: This is a simple face mesh detection program based on Artificial Intelligence which made with Python. It's able to detect 468 different

Md. Rakibul Islam 1 Jan 13, 2022
The official code repo of "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound Classification and Detection"

Hierarchical Token Semantic Audio Transformer Introduction The Code Repository for "HTS-AT: A Hierarchical Token-Semantic Audio Transformer for Sound

Knut(Ke) Chen 134 Jan 01, 2023
[ICLR 2022 Oral] F8Net: Fixed-Point 8-bit Only Multiplication for Network Quantization

F8Net Fixed-Point 8-bit Only Multiplication for Network Quantization (ICLR 2022 Oral) OpenReview | arXiv | PDF | Model Zoo | BibTex PyTorch implementa

Snap Research 76 Dec 13, 2022
This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures

Introduction This Repo is the official CUDA implementation of ICCV 2019 Oral paper for CARAFE: Content-Aware ReAssembly of FEatures. @inproceedings{Wa

Jiaqi Wang 42 Jan 07, 2023
How to Learn a Domain Adaptive Event Simulator? ACM MM, 2021

LETGAN How to Learn a Domain Adaptive Event Simulator? ACM MM 2021 Running Environment: pytorch=1.4, 1 NVIDIA-1080TI. More details can be found in pap

CVTEAM 4 Sep 20, 2022
Kaggle-titanic - A tutorial for Kaggle's Titanic: Machine Learning from Disaster competition. Demonstrates basic data munging, analysis, and visualization techniques. Shows examples of supervised machine learning techniques.

Kaggle-titanic This is a tutorial in an IPython Notebook for the Kaggle competition, Titanic Machine Learning From Disaster. The goal of this reposito

Andrew Conti 800 Dec 15, 2022
RP-GAN: Stable GAN Training with Random Projections

RP-GAN: Stable GAN Training with Random Projections This repository contains a reference implementation of the algorithm described in the paper: Behna

Ayan Chakrabarti 20 Sep 18, 2021
A program that can analyze videos according to the weights you select

MaskMonitor A program that can analyze videos according to the weights you select 下載 訓練完的 weight檔案 執行 MaskDetection.py 內部可更改 輸入來源(鏡頭, 影片, 圖片) 以及輸出條件(人

Patrick_star 1 Nov 07, 2021
GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning

GradAttack is a Python library for easy evaluation of privacy risks in public gradients in Federated Learning, as well as corresponding mitigation strategies.

129 Dec 30, 2022
A collection of differentiable SVD methods and also the official implementation of the ICCV21 paper "Why Approximate Matrix Square Root Outperforms Accurate SVD in Global Covariance Pooling?"

Differentiable SVD Introduction This repository contains: The official Pytorch implementation of ICCV21 paper Why Approximate Matrix Square Root Outpe

YueSong 32 Dec 25, 2022
buildseg is a building extraction plugin of QGIS based on PaddlePaddle.

buildseg buildseg is a Building Extraction plugin for QGIS based on PaddlePaddle. How to use Download and install QGIS and clone the repo : git clone

39 Dec 09, 2022
Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources.

Illumination_Decomposition Code for TIP 2017 paper --- Illumination Decomposition for Photograph with Multiple Light Sources. This code implements the

QAY 7 Nov 15, 2020
Prototype-based Incremental Few-Shot Semantic Segmentation

Prototype-based Incremental Few-Shot Semantic Segmentation Fabio Cermelli, Massimiliano Mancini, Yongqin Xian, Zeynep Akata, Barbara Caputo -- BMVC 20

Fabio Cermelli 21 Dec 29, 2022
😮The official implementation of "CoNeRF: Controllable Neural Radiance Fields" 😮

CoNeRF: Controllable Neural Radiance Fields This is the official implementation for "CoNeRF: Controllable Neural Radiance Fields" Project Page Paper V

Kacper Kania 61 Dec 24, 2022
🔥🔥High-Performance Face Recognition Library on PaddlePaddle & PyTorch🔥🔥

face.evoLVe: High-Performance Face Recognition Library based on PaddlePaddle & PyTorch Evolve to be more comprehensive, effective and efficient for fa

Zhao Jian 3.1k Jan 02, 2023